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é‘f The rate of development of new science and technology continues to increase
= both in the United States and abroad. It has been estimated by some that 60%
? of all new developments originate outside the United States. Whether or not this
‘stimate is correct is not really relevant. What is of concern is whether new tech-
nology flows as readily into the United States as domestically financed research :
results are made available to our friends abroad. This does not appear to be the J

5 case.

About 75% of all scientific and technical papers produced in the United States

are offered for sale by the National Technical Information Service (NTIS). Ap-

proximately 10% of NTIS sales are to foreign countries, indicating an aggressive
: pursuit of U.S. technology by key countries around the world. Most other coun-
’ tries have nothing resembling NTIS. They cannot be criticized for this, nor can
5 the U.S. government be criticized for establishing NTIS. Rather, these facts provide
a signal that the United States, in its own best interest, should change its present
indolent pursuit of foreign technology into a very active program.

There is ample evidence to support this need. Dr. Ruth M. Davis in the keynote
address at the DoD Materials Technology Conference, February 1978, said, ““In
a global sense, it must be concluded that the U.S. is no loraer the world leader
in Materials Technology.” Dr. Alan M. Lovelace said at a recent meeting of the 1
AlAA, “Yet, we see a growing overseas competition in areas where the United i
States has traditionally been a leader; high power transmitters, low-cost space
systems, efficient small receivers, effective use of very high frequencies -- these are
becoming the problems of other national industries, such as the Japanese, the
Germans, and the Canadians."’

3 Is the U.S. at the forefront in all phases of shock and vibration technology? |
think not. Are there developments in other countries that would assist us in ad-
vancing our own shock and vibration programs? | think so. We should try in every
way possible to promote efficient international technology exchange.

H.C.P.
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EDITORS RATTLE SPACE

A NEW PUBLICATION POLICY

AT W e ey

A recent issue of the Fluids Engineering Division News (ASME) introduced a new
policy dealing with the publication of research and engineering results in the
Journal of Fluids Engineering (JFE). Discussions of the Executive Committee
of the Fluids Engineering Division indicate some serious reflection by the com-
mittee with respect to publication costs. Interestingly, however, the proliferation
of publications seems to undergo examination only when money has become an
issue.

Recently (May 1978) | noted that much of the published technical material is
already available in government reports (available from NTIS}, conference pro-
ceedings, theses, and special publications of collected works. Policies that have
allowed multiple (often two and three times) publication of technical material
have helped to cause the information expiosion -- and the increased printing costs
and retrieval problems associated with it. The editors of the JFE have now charged
that specialists within a specific technology usually read the proceedings, reports,
or theses long before any paper appears in a technical journal. Because the special-
ists do not need the paper, there is no justification for publishing it.

Some individuals do need to know about the special technology published in
detailed technical reports -- design/development engineers, research specialists
in other disciplines, and novice workers. The editors of the JFE have correctly
noted that these readers are most interested in knowing about technological prog-
ress made, its practical relevance, the methodology involved, and supporting data.
An extended summary or review of the technical report would therefore be more
useful to such individuals than a complete article. If the novice or designer requires
more information he can go back to the original report.

The editors of the JF E are suggesting a revised policy: when a report or proceedings
is available, the paper published in the Journal will be about 2,000 words in length
and in the format of a summary. In addition, when the article is submitted for
review, copies of the original report will accompany it.

In my opinion this isa\bna\ive solution to an ongoing problem. Not only does it
deal with ever-increasing pullication costs and retrieval problems but also makes
available to practicing engineers a valuable summary of new technical work. The
executive committee of the Fluids Engineering Division are to be congratulated
i for their work. It is hoped that other ASME Technical Divisions and other societies
5 will also develop cost effective publication policies that serve practicing engineers.

R.L.E.
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SOUND ATTENUATION OVER GROUND COVER

K. Attenborough*

Abstract - This review covers recent developments
in the solution of the problem of a point source
above an absorbing plane with particular reference
to the approximations which have been made in
order to simplify numerical calculation. The physical
significance of these approximations is outlined.
Various assumed models for the ground surface are
classified and explored.

INTRODUCTION

The last three years have seen a considerable upsurge
in interest in sound propagation over absorbing ter-
rain. In our previous review [1], we mentioned the
prediction scheme for the calculation of road traffic
noise in the UK. Currently in the USA, predicted
noise levels to be used in assessing highway noise im-
pacts shall be obtained trom either of two methods
[2, 3]. A factor for ground attenuation is included in
one of these methods (1.5 dB per doubiing of dis-
tance) irrespective of receiver height, in excess of the
loss to be expected from free-field cylindrical spread-
ing (3 dB per doubling of distance). It has been sug-
gested [4] that the use of a constant ground attenua-
tion factor for highway noise should be reconsidered
since the free-field propagation loss is significantly af-
fected by the nature of the ground cover and that,
furthermore, slight errors in the assumed propagation
loss factor will translate into major errors in the noise
levels predicted at distant locations. In addition, fur-
ther research is necessary on the propagation of traf-
fic noise over terrain with different types of ground
cover. Finally, it has been indicated that the line
source assumption is not correct under low flow con-
ditions. In these circumstances, the fundamental the-
oretical problem concerns reflection of a spherical
wave over an absorbing boundary. Recently improve-
ments in the methods for predicting aircraft noise
have been suggested based upon developments in the
solution of this fundamental theoretical problem (5] .
These improved methods are recommended both for
‘lyover noise predictions and in correcting static test-
stand data to free-field conditions. The recommended
procedure for measuring the noise from highway ve-
hicles and embodied into much legislation ensures

that the measurements come through a spikey acous-
tic filter over the ground, the characteristics of which
could be important [6]. In the next section, recent
developments in solutions of the fundamental theo-
retical problem are reviewed.

SPHERICAL WAVE REFLECTION
FROM A FINITE IMPEDANCE BOUNDARY

A straightforward interpretation of spherical wave
reflection from a boundary between two semi-infinite
fluids is that all the reflected waves are travelling
from an image source located within the reflecting
medium at a depth equal to the height of the source
above the boundary. The sound field at the receiver
will then depend upon the phase difference between
the direct and reflected waves. The phase difference
is the sum of that introduced as a result of the path
difference between the direct ray and the ray from
the image source and the phase change on reflection
This simplified model can be used to explain many
observed results [6] particularly those obtained
over an acoustically hard boundary (7] or over
paths high above the ground.

An equation for the far field pressure distribution
which derives from this model and for the geometry
shown in Figure 1 is

peikir pieikira

e e R (1)
151 M2

where P; is the incident wave amplitude, k; is the
propagation constant in air, r, is the length of the
direct path from source to receiver, ry is the length
of any reflected path, R, is the plane wave reflec-
tion coefficient, Z, and Z, are the characteristic
impedances of the air and ground (treated as a
semi-infinite fluid), and 6, and 8, are, respectively,
the angles of incidence and reflection.

f Z,cosO, = Z|00303
P »Z;CO”. + 2, cosf, (2)

*Facuity of Technology, The Open University, *ilton Keynes, MK7 8AA, England (On study leave at the Noise Control Labors-
tory, Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801)
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Figure 1. Source Receiver Geometric Configuration

Time dependence e /Wt has been suppressed.

For large angles of incidence (grazing incidence)
equation (1) breaks down because of the assumption
of plane waves. Angles between 85° and 90° in-
cidence are often of importance in the propagation
of traffic noise. At grazing incidence, 8, = 90° and
Rp * - 1. This value signifies a phase change of 180°
on reflection and a cancellation of incident and re-
flected waves at grazing incidence even though their
path lengths are equal. Thus, the simple model
suggests the disappearance of the geometric acoustic
pressure and the formation of a shadow zone near
to the ground piane. Consequently, the classical
solutions to the theoretical problem [1] include an
extra term which does not allow complete cancel-
lation of direct and refiected waves at grazing in-
cidence and suggests penetration of the shadow
zone. Hence, the field above an absorbing plane is
written ;!

P okifs eikira

—= +

Pl r r
where F is termed the “boundary loss factor’’. This
form of solution is appropriate usually for large

(Rp + (1=-Rg)F)  (3)

separations of source and receiver and/or high fre-
quencies (eg., it requires separations of the order
of 100 m at 50 Hz and 1 m at 500 Hz). As we shall
show later, the form of the third term of equation
(3) is appropriate only for a relatively hard boundary

sl

It is usual to solve the problem of spherical wave
propagation above a boundary of finite impedance by
expanding the incident and reflected spherical waves
into cylindrical harmonics and by contour integra-
tion of the resulting integral of complex variables
for the total field. The complex variable of integra-
tion chaosen is either the wave number or the angle
of incidence and the possible contours for integra-
tion are many [8-11] reflecting the different meth-
ods of solution of the analogous electromagnetic
problem,

Many of the classical solutions to the problem which
are suitable for numerical computations [1] have
been shown to be in error at low frequencies and for
conditions where the boundary admittance (or
impedance) is purely imaginary [5]. The required
correction mpdifies the value of F and stems from the

IRV
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path of integration chosen in this type of solution.
It has been interpreted physically as a surface wave;
i.e., an air-borne wave which is confined to a region
near the ground surface with a resultant decrease
in amplitude with distance determined essentially
by cylindrical spreading. An additional attenuation
of the surface wave vertically away from and parallel
to the ground surface results from dissipation of
energy at the boundary due to coupling with the
ground surface and depends on the value of the
normal impedance of the surface. The surface-wave
term appears only for certain values of the real (Rp)
and imaginary (X) parts of ground impedance and
the angle of incidence. Although the correction term
has the physical attributes of a surface wave (for
Rp = 0), it is hard to justify physically since surface
waves usually propagate within the refracting medium
[12], ie. the medium of higher sound speed. As
such, its existence is controversial, although model
experiments have lent support to the concept [13].
The simplest type of surface-wave which emerges
from a theoretical analysis is the Rayleigh wave
(basically a type of shear wave) which occurs at and
within the free boundary of a solid, i.e. a solid/
vacuum boundary. This was first introduced as a
degenerate case of reflection of plane waves,

When an impulsive source and a receiver are located
in a lower velocity medium separated by a distance
large compared with the distance of other from a
plane of contact with a higher velocity medium,
it is observed that the first disturbance arrives at a
time which can only be due to traversal of part of the
path at the higher velocity. This is known is seis-
mology as the refraction arrival [13]. It can be under-
stood by a simple physical argqument based upon ray
acoustics. Rays incident from the lower wvelocity
medium will be refracted away from the normal in
the higher velocity medium. There will be a certain
limiting angle of incidence, known as the critical
angle beyond which there is no refraction, only
“internal’’ reflection. At the critical angle, the re-
fracted/reflected ray travels along the surface to
re-emerge into the medium of lower velocity at the
critical angle. This ground or lateral wave has been
investigated theoretically with regard to seismic
refraction experiments to determine the acoustic
properties of the ocean bottom [14] .

However, the assumption shared by the solutions
examined so far [1, 5, 7-11] is that the ground is

locally féacting, i.e. the refracted waves travel normal
to the boundary irrespective of the angle of inci-
dence. An essential pre-requisite for this assumption
is that the ground is the lower velocity medium. As
such, it should not be possible to generate lateral
waves of the seismological kind. Indeed, it seems
hardly likely in a physical sense for a wave to be
able to travel along a boundary in air but closely
coupled to the boundary, if the boundary permits
motion only normal to the surface. The assumption
of local reaction is explored further in the next
section. It has been pointed out that the identifica-
tion of a surface wave term in the solutions based
upon contour integration is not a consequence of
physical realities but of choice of particular integra-
tion contours for numerical purposes [10]. Choice
of a different but valid path of integration would let
the individual surface wave term disappear but still
present the complete 2nd correct total field.

When the source and receiver are on the boundary
(ie. 8; = 90°) and the impedance of the ground
surface is purely resistive but not inf}nite (ie., the
phase change on reflection is zero) Fe"“o/ro can be
interpreted, by direct analogy to the propagation
of electro-magnetic waves above the earth, as a
ground wave [15, 16]. As such, it suffers no excess
attenuation compared with propagation over an
infinitely hard surface but for longer distances
exhibits a loss of 6 dB/dd in addition to that provided
by the inverse square law.

Another method of solution has been advocated
recently which does not explicitly require a surface
wave interpretation [17] and the possibility of
obtaining exact expressions without the assumption
of local reaction has been outlined [18]. However,
so far, numerical calculations from this solution
have only been carried out for the limiting case of
source and receiver in the absorbing plane. Further-
more, experimental verification has been limited to
the frequency range 4-6 kHz.

The important practical test of any solution ‘s its
ability to predict excess attenuation. Good agree-
ment has been shown between theories which allow
for a surface wave and measurements of excess at-
tenuation for source-receiver separations of up to
300 m and for various heights over flat grass land
[10, 11, 15, 16]. The correspondence between
theory and experiment is valid only for relatively




limited data sets (NRC, Canada; BRE; England and
the Lund Institute, Sweden) obtained over ‘‘institu-
tional"” grass and an airfield. It may not hold true,
necessarily over other types of surface.

At the stage prior to integration, the integral repre-
sentations of the total field [11] may be considered
exact, although it has been suggested that many of
these representations are fundamentally in error
since they rely on far-field expressions for a spherical
wave and hence do not adequately predict the field
near the source, i.e. where r; and r; + 0. The ac-
curacy of numerical comparison with experiment
then depends partly on the assumption of a locally-
reacting semi-infinite or layered model of the ground
and partly upon the method of evaluating the inte-
grals. The evaluations usually require asymptotic
series expansions of the boundary loss factor F.
The various approximations have been explored
thoroughly [19]. They relate to source/receiver
separation; boundary impedance; and the grazing
angle. Some of these approximations were stated
in our earlier review [1] however they are restated
here for completeness. Noting again that equation
(3) is valid strictly only for horizontal separations
(ro) of source and reciever that satisfy k,ro>>1
fie., kyT3>>1) and for a high impedance or acous-
tically hard boundary (i.e., Z; >> Z,), then we have

F=1+iy(aw) - e W - erfc(-i/w ) (4)
2 - 2
where erfc(~iv/w) = — L
re erfc( w) ﬁ f—i\/We t

2ik|r3 Z|2 k]z
w= (1- cos? )
(-Rp)*  Z,*  k,? :

and is known as the numerical distance. k, is the
propagation gpnstant in the ground and  is the graz-
ing angle = = - @,. For a locally reacting boundary
(i.e. 8; =0 in equation (2))

w=ikyry[sin ¢ +(2,/Z5)]1%/2 (5)

Reference 15 uses r, in place of r; in the above
expression for w. The solution due to Ingard [1]
uses a different expression for w, however it has been
shown to lead to the same result under the approxi-
mations for which it is valid [19]. Hence w and F
are complex functions of source/receiver separation;

RN N ARA BT 2

grazing angle (or angle of incidence) and boundary
impedance.

Asymptotic series expansions of erfc(-i v/ w) are
available both for large and small w. For jw) << 1,
we must have small grazing angles. This follows from
equation (5) since the approximations k,r; > 1 and
(2,/Z3)* << 1 are implicit already. Then the power
series expansion quoted incorrectly in reference
1 and reference 5 is appropriate, hence
w2 2 4

w? w

F = 1+ie"Wy/Trw) -2e‘W(w--1—'—3+2-T§-3—!7—....) (6)
With the extension of this assumption to piace both
source and receiver on the boundary, ie. S=h =
¥ =0 and for |w| << 1 the bracket in the third term
of equation (6) can be neglected, the resulting F
inserted into equation (3) with Y =0 in equation (5)
and ry - r3 - ro to give w = ikyry(Z,/Z3)*/2 and

P ikir, 2mk; Z (7)
b i R ST R
P; I'o o Z, +n/4)

When both source and receiver are on the ground,
the solution in equation (7) has been called the
ground wave [15, 16]. The first term attenuates
according to the inverse square law and the second
term may be interpreted as the contribution of a
surface wave the attenuation of which is given by
both the 1% factor and the real part of the ex-
ponent viz. kyIm(Z;/Z;)%*. A slightly different
expression is given in reference 19, however it be-
comes the same as equation (7) if the approximations
kih|Zy /2,1 << 1 and (Z,/Z,)® << 1 are made
which are consistent with approximations already
stated. For |w| >> 1, i.e., very large source/receiver
separations so that |Z,/Z,|%kyr, >> 1, which is a
less reliable approximation in view of those im-
plicit already, the appropriate expansion for F is
(5,19}

1 3

F =2/ TawiS(im v/ Wie ™W - === sy (8)
where S(Im /W ) is the unit step function such that
1if ImyWw>0
Simvw) = %if Imyaw=0
0if Imyw<0

This differs from equation (14), [1] by the first

e e e Al 8 A
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term which may be interpreted as the contribution
due to the surface wave. With the additional condi-
tion that source and receiver are on the boundary
and curtailing equation (8) after the first two terms
we have

P. ikyr,
1 2e'%1'o 2mk
——————— 4 2iS(Im V) ()%
B ikrp? (24/2,0 #

9)

(ﬁ)e‘i[klfo(zn/zz)2 -1) -m/4] .
Z;

Again, this may be interpreted as a ground wave --
this time containing a term decaying as r~2 and in-
cludes a surface wave which exists only for Imy/w
2 0. For grazing incidence ¥ = 0, this condition
implies that

iklfo 4
Iml(— 22,1231 20 . (10)

If we write Zy/Z; = (R + iX,)™" consistent with
the local reaction assumption where R, and X, are
the real and imaginary components of the specific
normal impedance®, then this condition reduces to

-n/2 <tan™ ' (-|X,l/R,) <-n/4
(quoted incorrectly in reference 5)
or
o2 X4l 2Ry, (1)
(see also reference 8)

This condition is satisfied up to 1100 Hz according
to some ground impedance measurements [1] and
up to 800 Hz for other measurements [15, 16]
(see Figures 2 and 3).

For an acoustically soft boundary, i.e. where Z,/
Z; 2 1 and non-grazing incidence (but kyry>>1)
the basic expression for the sound field is best writ-
ten in the form [5]
Pt elkira
P

+ Awhenv, >- f(v,,0,)
f g (12a)

*Most typical resuits of measurement show that X, is nega-
tive (15, 16] however, it may also be positive.

e

P

P—‘ = A+ Bwhen vy, <-flvy,0;) (12b)
i

where Z,/Z, = v = v, + iv, (the specific boundary

admittance).

f(vy, 0, ) = cosecl, (cosf; +v; )(1 +vycosf,)
(1 + 2v, cosf +v:)'/’

2iv  1+vcosh, elkafz

A= [R,+
P kirg (cos8, +v)? I

B =tk ve~ VK1 () (1) [(1 - v?) %k r,)

Ho") ( ) denotes the Hanke! function of zero‘th
order and the first kind. Here the second term of A
may be taken to represent the wave attenuating
as r,~2 and B may be taken as a surface wave con-
tribution.

More exact expressions for A and B have been derived
which allow for any value of the ratio (Z,/Z;) and
for kyr; < 1 [10] and may be written

A =1+2kwekin [T chekifata
o
B=A+8

where C = (cosf; + v)® + 2i(1 + vcosf,) t - t?

These expressions retain integrals which may be
computed numerically rather than requiring power
series expansions. At grazing incidence, the more
exact condition for the existence of a surface wave
may be deduced from equation (46) [10] viz.

Re(1 - v?)%2 > Im(v)

1Xnl Rp
i >
which reduces to Rn [2R,? + X 2] A

which is slightly less stringent than the condition
imposed by inequality (11) since the right-hand
side of inequality (13) is always less than 1.

(13)

From equation (9) and (10), noting that the decay
is dominated by the exponential terms, the decay
of the surface wave depends upon the magnitude

i
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2k RpXp
2 2
(R + Xp)? +4X, R,

of k,Im(Z,/23)? =

This will be small under the conditions necessary
for the existence of the surface wave and will become
smaller as [ | is increased. Typically |X,! has its
largest values at the lowest frequencies [1, 15].
Thus, where the surface wave contribution exists,
its attenuation will be small. A corollary of this is
that where |X| is large, the excess attenuation will
be small. The nearer the value of |X,| approaches
Rp,. the greater the excess attenuation until the sur-
face wave is cut off altogether according to inequal-
ities (11) and (13).

MODELS OF THE GROUND SURFACE

Locally Reacting Semi-Infinite Fluid Models

All of the good agreement between theory and
outdoor experiment that has been quoted in the
literature [1, 11, 15, 16] has been obtained with
the simplifying assumption that the ground surface
behaves acoustically as the surface of a loca!ly react-
ing fluid; either of semi-infinite extent or of finite
thickness with a rigid backing. Cansequently, recent
reviews [5, 16] maintain that it is an adequate
approximation to regard a flat grass-covered soil,
sand or clay surface as semi-infinite and locally
reacting.

Local reaction is a feasible approximation to the
behavior of some rigid-framed fibrous absorbents
since they have a very high internal damping and
hence a low speed of sound propagation within them.
Let the propagation constant be ky = a + ib in a
medium (assuming a time dependence e ~'@t). Then

w wia~ib)
O T A ?

Re ¢, =—az—+—b-i—

if the damping (b) is large, then Re c; will be small.

Typical values of real and imaginary parts of nor-
malized, normal or characteristic impedance for grass
covered flat open ground (1, 156] are an order of
magnitude greater than the characteristic impedance
of a typical fibrous mediuin below 1 kHz (Figure 2).
The appreciable difference in impedance below

1 kHz suggests that ground surfaces may not be
locally reacting at low frequencies. Sound speeds
in sand deduced from mechanical (rather than acous-
tical) excitation are higher than in air. Using a typical
value for the characteristic impedance of sand and
assuming that the ‘‘acoustic’” density is the same as
the actual density, it has been shown that the local
reaction assumption could lead to considerable errors
in the ground reflection coefficient where the veloc-
ity of sound within the ground is greater than that in
air and where the angle ot incidence fails below
90°, i.e. non-grazing.

Use of averaged data for surface impedance [15]
in theories which omit surface wave terms [1] has
shown that there is very little difference between
the predictions of a theory which allows extended
reaction and one which assumes local reaction [20].
In the absence of consideration of surface wave type
terms, this work cannot be regarded as definite proof
of the adequacy of the local reaction assumption.

Fluid or Solid Layer Models

It has been recognized that there are situations in
which the locally reacting semi-infinite mode! (some-
times called the impedance model) is inadequate

(.

A multi-layer fluid model has been investigated in
order to explain certain measured values of normal
impedance, i.e. consistently positive imaginary parts
of the surface normal impedance (using the con-
vention that a negative imaginary part of impedance
represents a stiffness reactance).

The model consists of a top layer (0.05 m) of sand
backed by a semi-infinite layer of finite impedance
(clay). Although the layered model has not yet
yielded precise quantitative agreement with experi-
ment due to lack of data of the physical characteris-
tics of the ground, it does explain certain qualitative
features.

Semi-Infinite Porous Medium or Finite Porous
Layer Models

An alternative explanation of the observed values of
imaginary part of impedance would follow from
a porous semi-infinite model of the ground surface
since this implies an acoustic density p; = d + ie
which is complex. Hence
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w(d +ie)(a- ib)

Cy =
£P1Cy 32+b2

wlad +eb +i(ae - bd)]

a2 +b2

The imaginary part Im p, ¢, would change sian where
bd > ae. Typically for a porous fibrous absorbent
a and b have similar magnitudes at low frequencies
while e is small.

The physical meaning of a complex density has not
been made clear in the literature. The concept of a
complex density was first justified pnysically with
reference to the conceptual model of a capillary
pore medium. For such a model it is attributed to
the change in inertia of, and the frictional drag
suffered by, the air as it moves through the pores.
The complex density is intended also to include
inertial effects due to movement of the fibres and
the orientation of the pores.

A porous medium with a rigid frame and pores that
do not interconnect in directions parallel to its sur-
face will be locally reacting by definition. A semi-
infinite rigid-framed porous model does nat ade-
quately explain the form of the normal impedance
vs. frequency plot of some measured values of normal
impedance [21]. It has been suggested that a semi-
infinite flexible porous model might be adequate.
A calculation based upon a model with an expon-
entially decaying porosity with depth (but a rigid
frame) seems to give the best fit to experimental
results for grass-covered ground (below 1 kHz)
[21]. Although it seems likely that the compression
and compaction of the ground will increase with
depth there is no data available as yet to justify this
assumption.

The conclusions in reference 21 with regard to the
various possible models for the ground surface are
based exclusively on the NRC ground impedance
data (Figure 2) and hence, are relevant essentially
to “institutional’ grass. This is true alsc of reference
20 where good agreement between the NRC data
and the predictions of a power law relationship
between impedance and flow resistance (based upon
data for fibrous absorbents) is found. These results
have been supported recently by measurements over

a university band field. However, other measurements
made over grass and clay and the forest floor [1]
give rather different forms for the frequency depen-
dence of ground impedance (Figure 3). Indeed, the
pronounced flattening of the resistive component
at low frequencies [1] is precisely the effect pre-
dicted [21] for the rigidly-backed porous layer
model. In reference 21 the idea of modeling the
ground surface as a rigid-framed norous layer with a
rigid backing is dismissed. However, reference 11
uses exactly this approach. It is found possible to
model the rigid-framed porous layer with four real
constant parameters which are related to the real
and imaginary parts of the effective compressibility,
the porosity, the dynamic density of air in the
pores and the thickness of the layer. It is accepted
that some of these ‘“‘constants’’ may be frequency
dependent and no method of measuring or calculating
these “‘constants’’ directly from knowledge of the
physical and struciural nature of the ground surface
is offered. Instead, reliance is placed on an indi-
rect phenomenological (trial-and-error) method. The
source and receiver are located close to the ground
surface and a relatively small distance apart and the
excess attenuation spectrum is measured. Reasonable
values of the parameters are then tried in a theory
of propagation above a locally reacting boundary
(10] by computer iteration until satisfactory agree-
ment between calculated and measured plots is
obtained. The corresponding best fit values of the
parameters can then be used to predict excess atten-
uation over longer distances. It is concluded that the
locally reacting propagation constants of both the
airborne wave and the structure-borne wave in
flexible porous absorbents are critical in determining
whether or not the absorbent is locally reacting.
Local reaction will be a successful approximation
oniy if the energy content of the structure-borne
wave is small. This has been shown to be the case
in certain fibrous absorbents [27]). However, there
is little evidence in the literature of measurements
of propagation constants in typical ground media
as a result of airborne excitation.

CONCLUSIONS

The refinements to the theory of spherical sound
propagation above an absorbing boundary made
during the last few years have made it possible to
predict dB(A) attenuations of traffic noise over
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certain ground cover almost exactly. With improve-
ments in traffic noise legislation, however, more
detailed (spectrally) emission limits are likely to be
set using more sophisticated noise units as are al-
ready used for other types of noise source (aircraft,
industry) and will require more exact predictions of
the acoustic filtering due to ground cover. In this
event, the current situation is unsatisfactory. Most
of the solutions currently available require extensive
approximations in order to permit numerical evalua-
tion. Furthermore, the physical basis for them is
not yet completely or satisfactorily expounded.
Finally, it should be noted that the role of any
structure-borne (frame) wave or sideways pore
connections in the ground have not yet been explored
and their influence on the prevalent and questionable
local reaction assumption has not been checked.

ACKNOWLEDGMENT

During the preparation of this review, the author
was supported in part by a grant from the Applied
Research Laboratory of The Pennsylvania State
University, and he wishes to express his gratitude
to the Director, Dr. John C. Johnson.

REFERENCES

1. Attenborough, K. and Heap, N.W., “Sound
Attenuation over Ground Cover,’” Shock Vib.
Dig., 7 (10), pp 73-83 (1975).

2. National Cooperative Highway Research Program
(NCHRP) Rept. 117.

3. Department of Transportation, Transportation
System Center (TSC) Rept. DOT-TSC-FHWA-
73-1.

4. NCHRP Rept. 144,

5. Pao, S.P., Wenzel, AR, and Oncley, P.B.,
“Prediction of Ground Effects on Aircraft
Noise,”” NASA Tech. Paper 1104 (1978).

6. Attenborough, K. and Glaretas, C., “Propaga-
tion of Highway Noise over Finite Impedance
Ground Planes,” Preliminary Rept. to FHWA
on Contract No. 7-3-0002 (1978).

PR ———

10.

1.

12.

13.

14.

15.

16.

17.

18.

. Piercy, J.E. and Embleton, T.F W., “Effect of

Ground on Near-Horizontal Sound Propaga-
tion,”” SAE Trans., 83, pp 928936 (1974).

. Donato, R.J., ""Propagation of a Spherical Wave:

Near a Plane Boundary with a Complex Im-
pedance,” J. Acoust. Soc. Amer., 60 (1), pp 34-
39 (1976).

. Donato, R.J., “‘Spherical Wave Reflection from

a Boundary of Reactive Impedance Using a
Modification of Cagniad's Method,” J. Acoust.
Soc. Amer., 60 (5), pp 999-1002 (1976).

Thomasson, S.l., ““Reflection of Waves from a
Point Source by an Impedance Boundary,”
J. Acoust. Soc. Amer., 59 (4), pp 780-785
(1976).

Thomasson, S.I., ““Sound Propagation above a
Layer with a Large Refractive index,”” J Acoust.
Soc. Amer, 61 (3), pp 6569-674 (1977).

Ewing, W.M., Jardetzky, W.S., and Press, F.,
Elastic Waves in Layered Media, McGraw-Hill
(1957).

Donato, R.J., “Model Experiments on Surface
Waves,” J. Acoust. Soc. Amer. (to be published).

Stickler, D.C., "‘Reflected and Lateral Waves for
the Sornmerfeld Mode!,”" J. Acoust. Soc. Amer.,
60, pp 1061-1070 (1976).

Embleton, T.F.W., Piercy, J.E., and Olson, N.,
""Outdoor Sound Propagation over Ground of
Finite Impedance,” J. Acoust. Soc. Amer.,
59, pp 267-277 (1976).

Piercy, J.E., Embleton, T.F.W., and Sutherland,
L.C., "“Review of Noise Propagation in the
Atmosphere,” J. Acoust. Soc. Amer., 61, pp
1403-1418 (1977).

Briquet, M. and Filippi, P., "Diffraction of a
Spherical Wave by an Absorbing Plane,” J.
Acoust. Soc. Amer., 61, pp 640-646 (1977).

Filippi, P. and Habault, D, "Diffraction of a
Spherical Wave by the Plane Interface Limiting
a Perfect Fluid and a Porous Medium,' J. Acoust

e e P L R £ R AT T R e




ot

G R

P R R 5 ST

19.

21,

22

23.

24.

25.

26.

27.

28.

Soc. Amer. (to be published).

Chien, C.F. and Soroka, WW., “Sound Propa-
gation Along an Impedance Plane,’” J. Sound
Vib., 43, pp 9-20 (1975).

. Chessell, H.l., “Propagation of Noise Along a

Finite Impedance Boundary,” J. Acoust. Soc.
Amer., 62, pp 825-834 (1977).

Donato, R.J., “Impedance Models for Grass-
Covered Ground,” J. Acoust. Soc. Amer., 61,
pp 1449-1452 (1977).

Kosten, CW. and Janssen, J.H., “‘Acoustic
Properties of Flexible and Porous Materials,"’
Acustica, 7, pp 372-378 (1957).

Biot, M.A., ““Generalized Theory of Acoustic
Propagation in Porous Dissipative Media,” J.
Acoust. Soc. Amer., pp 1254-1280 (1962).

Waiton, K., ““Elastic Wave Propagation in Model
Sediments - |,”" Geophys. J. Roy. Astro. Soc.,
48, pp 461-478 (1977).

Walton, K., ““Elastic Wave Propagaticn in Model
Sediments - Il,” Geophys. J. Roy. Astro. Soc.,
50, pp 473-486 (1977).

Brutsaert, W., "“The Propagation of Elastic
Waves in Unconsolidated Unsaturated Granular
Mediums,” J. Geophys. Res., 69, pp 234-257
(1964).

Sides, D.J., Attenborough, K., and Mulholland,
K.A., "Application of a Generalized Acoustic
Propagation Theory to Fibrous Absorbents,”
J. Sound Vib., 19, pp 49-64 (1971).

Dickinson, P.J. and Doak, P.E., ‘'Measurements
of the Normal Acoustic Impedance of Ground
Surfaces,” J. Sound Vib., 13, pp 309-322 (1970).

. Carison, D.E., McDaniel, O.H., and Reethof, G,,

"“Theoretical and Experimental Research on the
Acoustic Characteristics of Forests,’”” Final Rept.
on US. Dept. of Agriculture Forest Service
Grant No. 23-608 (1976).

. Attenborough, K. and Dean, D., “‘Surface Im-

pedance of Ground Cover,” Paper presented
at INTERNOISE 76, Washington, D.C. (1976).




LITERATURE REVIEW f iS5,

e

B

14

The monthly Literature Review, a subjective critique and summary of the litera-
ture, consists of two to four review articles each month, 3,000 to 4,000 words in
length. The purpose of this section is to present a “digest” of literature over a
period of three years. Planned by the Technical Editor, this section provides the
DIGEST reader with up-to-date insights into current technology in more than
150 topic areas. Review articles include technical information from articles, reports,
and unpublished proceedings. Each article also contains a minor tutorial of the
technical area under discussion, a survey and evaluation of the new literature, end
recommendations. Review articles are written by experts in the shock and vibrz.tion
field.

Recent research on the dynamic response of fluid-filled shells is reviewed by Pro-
fessor DiMaggio of Columbia University. Papers considering gravity effects or
fluid flow are not reviewed.

The series of review articles on seismic waves by Dr. De continues with a descrip-
tion of mathematical methods.
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RECENT RESEARCH ON THE DYNAMIC RESPONSE OF FLUID-FILLED SHELLS

F.L. DiMaggio®

Abstract - This article reviews papers, published
between 1975 and 1978, involving the dynamic
response of fluid-filled shells. Papers considering
gravity effects or fluid flow are not reviewed.

In an eartier paper {1], the problems of steady state
and transient responses of fluid-filled shells were
formulated and discussed, and publications involving
analytical investigations were reviewed. The present
article reviews investigations published from 1975
1977. Studies involving gravity effects on free fluid
surfaces (e.g., sloshing problems) and those involving
motion of either the fluid or container are excluded.
No claim is made of definitive coverage, but the
references cited and the bibliographies included with-
in them include most of the important contributions.

CYLINDRICAL SHELLS

Investigations of the propagation of waves in cylin-
drical tubes have been motivated by possible ap-
plications to arterial blood flow, acoustic delay lines,
and water hammer in pipes.

Two major studies have been concerned with small
amplitude steady-state axisymmetric waves in infinite
circular cylindrical shells. Scarton and Rouleau [2]
used the method of eigenvalleys to calculate the
first 32 fluid modes and plotted dispersion curves
for the case of a rigid tube containing a viscous,
compressible fluid. This excellent paper also reports
the discovery of backward propagating waves; bound-
aries betweer low, high, and intermediate frequen-
cies, and a new type of boundary layer.

An equally impressive study for thin viscoelastic
tubes of constant thickness containing a compres-
sible viscous fluid is that of Rubinow and Keller
(31. It is an extension of an earlier paper concerned
primarily with an inviscid fluid [4]. The dispersion
equation relating the propagation constant k to the
angular frequency w was solved using analytical
and _numerical _methods [3]. Asymptotic_formulas

*Professor and Chairman, Dept. of Civil Engineering and
Engineering Mechanics, Columbia University, New York,
New York

for k(w) were obtained for both low and high fre-
quencies. Numerical values for intermediate fre-
quencies were plotted as dispersion curves for mate-
rial parameters that characterize arterial blood flow.
Extensive asymptotic results are presented for the
special case of a rigid tube. The authors point out
the the root

k = (iaw)” (1)

introduced by Scarton and Rouleau [2] is false.
E
a=—L2 (1207 (2)
M P
E is Young's modulus, u the shear viscosity coef-
ficient, po the fluid density, p; the shell density,
and o Poisson’s ratio. In addition, they found a
previously unknown root, denoted by k -, for an
elastic shell. The root is proportional to w at low
frequencies. They also showed that a nonuniformity
exists in the dependence of the phase wvelocities
of the propagating modes on u and w at u = 0,
w=0.

Barclay, Moodie, and Haddow [5]) studied the
response of fluid in a semi-infinite tube, the circular
cross-sectional area of which varied with length
according to either an exponential or power law.
The tube was filled with an inviscid incompressible
liquid, and a disturbance was present at one end.
The use of a one-dimensional approximation for the
fluid equations means that the shell response is not
coupled to that of the fluid. Thus, insofar as the
fluid motion is concerned, the tube does nothing
more than provide the geometry, as would a rigid
tube. When the disturbance is an oscillatory func-
tion, a high-frequency expansion is assumed. For
a Heaviside disturbance, expansion in the form of
a progressive wave is chosen. The numerically exact
solutions and asymptotic expansions were com-
pared.

The design of such internal reactor system com-

ponents as shrouds and thermal liners must provide
for vibrations induced by fluid flow. This need has
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led to a series of studies involving infinitely long
pairs of coaxial circular cylindrical shells separated
by a fluid. Stokes [6] determined the fluid virtual
mass - also referred to as added mass or entrained
mass -- for a rigid cylinder translating within a rigid
cylinder with incompressible liquid between them.

Chen, Wambsganss, and Jendrzejezyk [7] solved the
problem of the damped harmonic oscillations of a
rigid rod in a rigid shell separated by an incom-
pressible linear viscous fluid. They obtained closed
form solutions for the virtual mass and damping
factors that represent the effect of the fluid on the
vibrating rod.

The frequency-dependent virtual mass effect for
prescribed non-axisymmetric harmenic motion of
an infinite cylindrical surface inside a rigid cylindri-
cal surface separated by a compressible, inviscid
fluid, obtained earlier in closed form [8], has been
rederived [9]. Yeh and Chen [10] considered two
elastic shells (governed by Fliigge's equations) sep-
arated by a viscous fluid, thus generalizing an earlier
paper [11], in which an inviscid fluid was assumed.
They presented [10] numerical resc':. for the added
mass and damping effect for an incor.., -essible fluid.

Self- and mutual-added mass coefficients for a group
of (parallel) rigid circular cylinders in a rigid cir-
cular cylindrical channel containing an inviscid,
incompressible fluid have been obtained [12, 13].
The introduction of a finite element procedure
allowed the consideration of noncircular geometries
[13].

The axisymmetric response to a ring load traveling
axially at a constant speed has been studied for
an elastic, infinite, circular cylindrical shell filled
with an inviscid linearly compressible fluid [14].
The effects of shear and rotatory inertia were in-
cluded in the shell equations. Extensive numerical
results confirmed that, as the speed of the load
increased, the effect of the internal fluid became
more significant.

An interesting application has to do with coaxial
cylindrical shells of finite length that represent
the lower part of a nuclear reactor containment
vessel (see Fig. 1). Water, assumed to be linearly
compressible, occupies the space between a com-
paratively rigid pedestal and a linearly elastic thin
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steel shell stiffened with elastic steel T-beams. Di-
Maggio, Bleich, and McCormick [15] studied the
dynamic response of this model to the axisymmetric
cylindrical pressure pulse exerted on the outer shell
wall when all discharge pipe valves were released.
Bending moments and shears along the outer shell
wall caused by these pulses had the spatial and
temporal variations shown in Figures 1 and 2 re-
spectively.

SYMMETRY
ABOUT [FREE WATER SURFACE
r e e 2
3
—— 1
2 ——>
Pl(z.l) —3 SHELL
2 WALL
RIGID CYLINDRICAL :ar
|~ SURFACE

Figure 1. Model of Containment Vessel and Variation
of Incident Pressure with Depth

Most studies of head injury have been based on
spherical and spheroidal shells. Liu and Chandran
[16], however, used a rigid, finite cylindrical con-
tainer to model the skull. They simulated the brain
as a compressible, inviscid, fluid, and attached a
spring and dashpot externally to the container to
account for hair, skin, and a helmet. Numerical
results were based on an infinite series solution for
the impact of this model on a rigid wall.

SPHERICAL SHELLS

The papers on fluid-filled spherical shells that have
come to this reviewer’'s attention during the past
three years appear to be part of a continuing re-
vearch effort to establish mechanical models for
s<ull and brain injuries to the human head [1].

A closed for solution for the potential functions
governing the response of an incompressible elastic
medium in a rigid spherical shell subjected to an
acceleration in the form of a Dirac delta function
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Figure 2. Time History of Incident Pressure P| (z, t)

has been obtained [17). Numerical solutions, using
finite difference techniques, have also been pub-
lished for the case of a Maxwell fluid subjected to
translational and rotational acceleration of its rigid
spherical container [18] and of only angular ac-
celeration with a Kelvin material modeling the
brain [19].

Akkas [20] considered a thin, elastic, three-layered
shell filled with an inviscid compressible fluid. A
finite difierence scheme was used to determine the
shell stresses and fluid pressures for an axisymmetric
impact. Numerical results have been presented
for loading with spatial and temporal variation
previously used [21].

An approximate solution for a hemispherical rigid
shell having a flat bottom filled with a viscoelastic
fluid (satisfying the Navier-Stokes equations) and
subjected to a sudden rotation has been published
by Ljung [22]. He first obtained the solution for
an infinite cylindrical shell and a semi infinite cylin-
drical shell with a flat end and determined the effect
of the flat bottom. He then applied a similar correc-
tion to his results for a spherical shell.

SPHEROIDAL SHELLS

Rand and DiMaggio [23] obtained frequency spectra
for elastic prolate spheroidal shells filled with an
inviscid, linearly compressible liquid; flexural effects
in the shell were neglected. Lee and DiMaggio [24]
have generalized these results by including the effects
of bending. Figure 3 is a comparison of the new
spectra with those obtained previously. As has been
discussed [1], the inclusion of bending affects only
the lowest branch, involving essentially radial motion,
by eliminating the unrealistic cut-off frequency
predicted by membrane shell theory. The symbols
in Figure 3 have been defined [24]; their values
are characteristic of a human skull and brain.

The transient response of an extensional elastic
prolate spheroidal shell filled with an inviscid com-
prassible fluid to a uniformly distributed Heaviside
piassure pulse has been studied [25]. The results
have been generalized by considering the response
of thick shells of viscoelastic material to excita-
tions having various time histories [26)] .
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Figure 3. Frequency Spectra for Fluid-Filled
Spheroidal Shells with v = 0.3,
cg/c = 1.0698, and h/2 = 0.025

MISCELLANEOUS
A formulation of the theory for the large deforma-
tion of fluid-filled membranes of revolution has
been presented by Engin [27] .
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ON SEISMIC WAVES
PART III: MATHEMATICAL METHODS

S. De®

Abstract - The frequency equations for the Rayleigh
and Love waves in various models of the earth -- from
a single half-space to multilayered semi-infinite
media - are well known. Some of the layers are
considered to be heterogeneous or anisotropic. Be-
cause suitable solutions for the equations of motion
for most cases of lateral nonhomogeneity are not
possible, the principle of constructive interference
associated with the ray theory is used to derive the
frequency equation. The Thomson-Haskell matrix
method has been applied to multilayered media.
This article and the last article in the series describe
various mathematical methods used to study seismic
waves.

In 1934, Jeffreys [1] attempted to determine Love
and Rayleigh wave dispersion curves for media with
vertical heterogeneity; he used Rayleigh’s principle
to obtain approximate results. ln 1961, he showed
that Rayleigh’s principle can be used to derive small
corrections in the theory of surface waves [1].

Rayleigh used the variational method to estimate
eigenvalues - particularly the periods of normal
modes or oscillation of a bounded vibrating system.
During the past 20 years, theorems relating to vectors
in Hilbert space have been used in variational prob-
lems for estimating such quantities as the trans-
mission coefficients for diffracted or scattered waves.

Methods that Utilize Rayleigh Waves

The propagation of Rayleigh waves over the free
surface of nonhomogeneous semi-infinite medium
in which density and elastic parameters are functions
of depth has been considered [2, 3]. The loci that
govern the limits to which a Rayleigh wave can
penetrate a half-space have also been examined [4].
Both interior and surface sources were considered.

The frequency equation for Love waves in a homo-
geneous layer overlying a vertical heterogeneous
semi-infinite medium has been described [5]. A
method for determining all vertical nonhomoge-

neities for ich the SH-wave ion_can

*Oid Engineering Office (Qrs), Sentiniketan, Birbhum,
West Bengel, India

solved in terms of standard transcendental functions
has been described [6]. The frequency equation for
SH-wave propagation in an anisotropic, nonhomo-
geneous, layered stratum lying between two isotropic,
homogeneous half-spaces has been derived using the
Thomson-Haskall matrix method [7] .

Love wave propagation in a transversely isotropic
nonhomogeneous medium has also been studied by
defining elastic parameters in the equivalent iso-
tropic case [8]. The effect of anisotropy on the
cut-off frequency of Love-wave clustering has also
been considered [9]. The propagation of Love waves
has been based on finite strain theory [10]. Primary
Love waves were associated with secondary Rayleigh
waves and tertiary Love waves.

The principle of constructive interference has been
used to derive the frequency equation of Love
waves propagating in an elastic layer overlying a
semi-infinite elastic medium [5, 11, 12]. The equiva-
lence between the acoustic waves in a fluid layer
and the SH waves in a solid layer over a rigid half-
space was also studied [12].

Finite deformation theory was used to show [13]
that the propagation of primary Rayleigh waves is
accompanied by the propagation of secondary Ray-
leigh waves with half the wavelength and period of
the primary one. The amplitude of the secondary
wave is small compared to that of the primary one.
A simple numerical method has been developed
[14] to analyze generalized Rayleigh waves in multi-
layered elastic media. The method avoids displace-
ment potentials and leads to a simple eigenvalue
problem that can be solved with computer codes.

The outerlayer of the earth contained several regions:
oceanic, continental, ridge, and arc. The multiple
regression method has been applied [15] to greet-
circle Rayleigh-wave data to obtain the dispersion
characteristics of each region. Measurement of
phase and group velocities for two paths circling the
earth have been given [16]. p values for Rayleigh




waves with periods from 15 to 50 sec have been
determined from frequency-averaged spectral den-
sities obtained at pairs of stations along great circle
paths [17]. Isolated Rayleigh waves Rj3, Rs, or
R, from the Rat Island earthquake of February 4,
1965, were used to investigate the variation of
ellipticity as a result of path differences [18] .

A finite difference iterative formulation, applied
successfully to acoustic surface wave scattering in
homogeneous, layered-isotropic, and nonlinear media
was extended to Rayleigh mode propagation in ani-
sotropic materials [19]. Rayleigh waves on elastic
crystals have been considered [20]. The equation
for unattenuated Rayleigh waves traveling on a free
surface of an anisotropic elastic half-space could
always be reduced to one purely real equation. It
was also shown that surface waves are impossible
on a fixed boundary.

The finite element method in two dimensions was
modified to study Rayieigh waves in an oceanic
model [21]. It is necessary to determine horizontal
displacements within finite elements of water from
vertical displacements and the condition of irrota-
tional motion. The finite element method leads to
a discontinuity in horizontal displacement at the
ocean bottom. Phase velocities of Rayleigh waves
calculated by the method of Haskall and Dorman
were within 0.2 percent of those measured by a
seismometer on the bottom of the Pacific Ocean.
The finite element method can also be used to cal-
culate the variation with depth of the horizontal
and vertical amplitudes of Rayleigh modes.

Rykunov [22] studied the propagation of Rayleigh
waves, given a layer the thickness of which changes
abruptly. He also studied the characteristics of the
Rayleigh-wave field in a half-space containing a
disturbance in the form of a vertical slit and the
effect on the Rayleigh-wave field of topographic
characteristics of the free boundary.

Basic equations for the theory of Rayleigh waves
traveling through the shallow layers of a homoge-
neous and isotropic half-space have been presented
[23]. The variationa! theory of perturbations of
eigenvalues, or phase velocity, was briefly considered
[24]. A procedure for simplifying computation
was given for perturbations of group velocity, or
spectral amplitude. The theory and experiments
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pertaining to the propagation of Rayleigh waves
along perturbed boundaries have been considered
[25]. The effect of a layer on surface wave prop-
agation on a half-space has also been studied [26].

Waves at the interface of two isotropic solid half-
spaces subject to stress and displacement have been
studied [27, 28]. Calculations for waves at the
interface of two anisotropic media -- namely, two
crystalline half-spaces in cubic symmetry but with
different orientations -- have been given [29]. The
results indicated that many geometrical dispositions
allow propagation of a generalized Stoneley wave.
The interface chosen is a (0, 0, 1) plane for each
crystal; waves either have a real phase velocity of
travel slowly along an arbitrary direct.>r. in the
interface of angles of ¢; and ¢, to the (1, 0, 0)
axes of the crystals. The angles between the two
(1,0,0) axes are ¢, and ¢,.

The magnetoelastic surface waves particularly Ray-
leigh, Love, and Stoneley waves, in an initially
stressed conducting medium have been considered

- [30]. The Thomson and Haskel matrix method has

been used to obtain the dispersion relation for
generalized surface waves in multilayered media;
the layers can be either isotropic or anisotropic
[31]. Experimentally determined Rayleigh-wave
dispersion curves for group velocity have been given
for five po..its [32] .

The existence of Rayleigh waves in an anisotropic
elastic semi-space has been investigated [33]. John-
son [34] considered wave propngatiun along a plane
of symmetry in an anisotropic medium. (The maxi-
mum number of independent elastic constants was
therefore reduced from 21 to 13.) Stoneley waves
at solid-solid interfaces are possible only for certain
elastic oconstants and density parameters. Regions
in which waves might occur were calculated for
waves traveling in various directions and for media
with cubic, orthorhombic, and monoclinic sym-
metries; these regions in anisotropic media were
similar to those calculated by Scholte [35] for
isotropic media. For certain elastic constants, the
region from one direction of wave propagation to
another varied greatly. The phase velocities of various
waves -- solid-solid Stoneley waves, liquid-solid
Stoneley waves, and Rayleigh waves -- were cal-
culated for the three symmetries as a function of the
direction of wave propagation for specific substances
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The propagation of Rayleigh waves along a trac-
tion-free surface of a semi-infinite anisotropic elastic
body, has been applied to interfacial waves in an
infinite body composed of two anisotropic elastic
half-spaces welded together. An appropriate equation
was constructed directly from complex vectors
provided by the analysis of free Rayleigh waves in
the constituent half-spaces. This equation was re-
duced to a single real relation, confirming that
Stoneley waves, when they exist are not confined
to discrete directions of propagation.

Long-period Love waves in a medium consisting of
layers of various thickness have been discussed
[38]. The excitation of Love waves with a period
of 100 sec has been studied as a function of mag-
nitude in the earth’s mantle [39]. The spectral
densities of 153 measurements of Love waves during
earthquakes since 1930 ranged from 6.0 to 8.9;
they were used to determine an excitation curve.
Fundamental-mode Love and Rayleigh-wave dis-
persion computations for multilayered, perfectly-
elastic media have been studied [40] .

The continuum theory has been used [41] to study
surface wave propagations in layered media. Exact
dispersion curves were also worked out for a relative-
ly simple laminated medium. The continuum theory
was also used to study Rayleigh-wave dispersion
on a laminated half-space for which exact disper-
sion equations cannot be obtained.

Conditions for experimental studies of seismic
waves have included a medium in which wave velocity
increased slightly with depth and heterogeneities
caused small velocity changes (42]. The phase
velocity dispersion curve was complicated. The
correlation between this curve and various harmonies
of the inverse square of layer velocity was analyzed.

A finite element technique has been developed [43]
to study the propagation of Rayleigh and Love waves
across two-dimensional nonhorizontally-layered me-
dia. A layered model with lateral nonhomogeneity
was constructed [44] for the Himalayan region
where, according to plate theory, a mobile continent
collides with a relatively stationary crustal block.
Love-wave dispersion characteristics of such a model
were evaluated using the ray-theory. A variational

principle for Love waves -- especially those with a
long period -- propagating in a layer of variable
thickness overlying a half-space has been formulated
[45] . An averaging procedure was used to determine
the wave modulation due to the gradual variation
in thickness. The wave number and amplitude modu-
lation for both a monochromatic wave and a transient
wave train due to an impulsive source were also
determined.

The possibility that Love waves can propagate in an
electrostrictive dielectric medium has been inves-
tigated [46]. Such waves can propagate, but the
electric surface potential has some effects. Love
and Rayleigh surface waves were studied using large-
base quartz extensometers [47]. Group velocities
of both Rayleigh and Love waves with periods from
30 to 150 sec have been accurately determined by
band-pass filtering and group-delay time methods.
Rayleigh waves in an elastic medium with two hori-
zontal layers overlying a semi-infinite elastic medium
above which lies a liquid layer have been discussed
(48] .

Extremely rapid changes in Love-wave velocity have
been observed in some tectonic areas. Two non-
uniform channels with exponential velocity and
variable figidity in vertical and lateral directions
were used to consider Love-wave disperison charac-
teristics in such areas [49] .

Analysis of a sum of 13 auto-correlograms of hori-
zontal component seismograms have predominantly
transverse motion revealed that fundamental-mode
Love-wave data can be contaminated by higher
torsional modes [50]. Phase velocities of Rayleigh
waves have been measured worldwide for waves with
periods in excess of 160 sec for a number of pro-
files and many geologic structures [51]. The propa-
gation of such waves in the earth has been inves-
tigated for waves with periods ranging from 60 to
590 sec [52] .

The influence on Love-wave propagation of a dis-
continuity at a vertical boundary in a medium has
been considered (53] . Two surface waveguides were
investigated, and interactions between Love waves
were shown. It was also shown that earthquakes
could excite the first higher mode of Love surface
waves with periods ranging from 30 to 90 sec; the
mode could travel at a group velocity comparable
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to that of the fundamental mode [54] . These results
are applicable to the effect of multipath interference
of two waves of similar mode traveling at an angle
with respect to each other. Propagation of Love
waves in a multilayered anisotropic medium with
hexagonal symmetry has been studied [565]. The
dispersion of Love waves that propagate in a later-
ally heterogeneous layer lying over a homogeneous
semi-infinite medium has been studied using con-
structive interference [5, 56] . The dispersion charac-
teristics of Love waves in a transversely isotropic
and laterally nonhomogeneous surface layer lying
over a homogeneous half-space was also considered
using constructive interferences [%7]. The propa-
gation of Love and Rayleigh waves along an approxi-
mately north-south section of the San Fernando
Valley has been studied [58] .

Dispersion curves for leaking modes of Love waves
have been computed for a single-layer crust-mantle
model [59]. Group velocities well below the Airy
phase of normal modes were determined. No phase
velocities occurred between the velocity of the half-
space and that corresponding to the Brewster angle.
The Thomson-Haskell matrix method was used to
derive the following: response spectra of a multi-
layered eiastic half-space to plane body waves,
dispersion equations for both Rayleigh and Love
waves, reiative excitations of surface waves at any
depth, and particle motion conditions for Rayleigh
waves at a free surface and at any depth [60] .

The influence of primary stress upon the propagation
of Love waves in a welded layer and half-space was
examined by the theory of nonlinear elasticity
[61]. Multipath propagation of Love waves was
analyzed [62] from data obtained from three in-
struments at the Large Aperture Seismic Array
(LASA). In most cases, the propagation paths for
both Love and Rayleigh waves could be associated
with refractions and reflections at the continental
margins.

A method has been proposed to detect one Rayleigh
wave in the presence of the coda of a larger Rayleigh
wave [63]. The quasi-linear stress-strain relations
were used to study the propagation of finite Love
waves in a heterogeneous elastic half-space lying over
a homogeneous elastic half-space [64]. SH-wave
propagation in an anisotropic nonhomogeneous
crustal layer lying on a yielding and rigid isotropic

half-space has been considered (65], as has the
propagation of SH waves using the velocity dis-
tribution function compatible with the actual dis-
tribution of shear-wave velocity inside the earth
[66]. The constants involved in the velocity dis-
tribution function were calculated from the Guten-
berg-Birch model.

A unique root corresponding to Rayleigh exponential
wave was obtained for a general form of the Ray-
leigh equation [67]. The group velocity of Rayleigh
waves for ten seisms from different regions has been
studied experimentally [68]. The beginning of the
recordings show two predominant groups separated
by a minimal amplitude. A sharp maximum of the
energy spectra corresponds to a wavelength near the
depth accepted for the low velocity layer.

Crampin [69] reported that a phase relationship
between vertical and transverse horizontal motions
exists for second-mode seismic wave trains along
many paths in Eurasia; such relationships are not
possible with elastic waves in isotropic layered media.
These coupled, or generalized, surface wave trains
are caused by an anisotropic layer immediately
beneath the crust. Crampin suggested that the aniso-
tropy results from an orientation of crystalline
mantle material by convection currents. Surface-
wave propagation in unlayered and multilayered
anisotropic media was examined numerically using
an extension of the Thomson-Haskell matrix method
[70] . Surface wave propagation in an isotropic earth
model containing an anisotropic layer in the upper
mantle differed little from propagation in a purely
isotropic model. The propagation of the third gener-
alized mode, corresponding to the second Rayleigh
mode in isotropic structures, was an exception;
particle motion in this mode differed considerably
from motion in isotropic media. Interesting prob-
lems regarding surface waves have been studied
[71-100, 102] .

It has been reported [103] that oceanic surface
waves can be altered by low rigidity sediments
along the propagation path. Love and Rayleigh waves
from mid-Atlantic ridge earthquakes are so affected.
Thin sediments disperse short-period Love waves.
Sediments thicker than two km remove energy from
surface waves having periods up to 40 sec. These
sediments also alter the particle motion of Rayleigh
waves and complicate the dispersion relationship.

PR s




Such thick sediments substantially reduce the phase
velocity ot surface waves with periods exceeding 100
sec. Some problems of interest regarding wave phe-
nomena in nonhomogeneous media have appeared
(104,105] .

For a given direction of propagation on the free sur-
face of a half-infinite anisotropic crystal, the phase
velocity of the surface wave will always be less than
the limiting velocity except when the bulk wave that
defines the limiting velocity satisfies the condition
of a free surface [106] .

An elastic half-space containing a surface obstacle
with elastic constants different from those of the
half-space and only slight deviation in boundary
shape has been studied [107]. A perturbation meth-
od and a finite difference solution were combined
to calculate the motion of the half-space due to an
impulsive source. Results showed that Rayleigh and
reflected waves are influenced by the obstacle. This
property could be used to screen elastic waves. It
is known that small variations in the elastic parame-
ters of a solid cause scattering of elastic waves and
thus a reduction in their amplitudes. The attenuation
coefficients associated with reduction in amplitude
have been calculated for surface waves [108]. Ex-
pressions have been derived for waves, the lengths
of which are long compared with the mean wave-
length of those whose elastic parameters have been
varied in space. The attenuation coefficients were
those that would be expected if the attenuating
mechanism involved viscoelasticity.

The radiation of Rayleigh and Love waves from two
different horizontal circular sources of stress has
been studied [109]. The displacement on the free
surface -- deduced from the equation of motion and
the boundary conditions -- was integrated over a
finite radius to simulate a disturbance that propagates
with a constant finite velocity. An explicit expres-
sion for the layer matrix, which serves as the basis
for calculating spheroidal oscillation eigenvalues
using the Thomson-Haskell matrix method was
obtained by an analytical inversion of the charac-
teristic matrix fro a spherical homogeneous layer
[110]. The formulation was applied to an interpre-
tation of the observed dispersion of Rayleigh waves.

In stratified piezoelectric media a pure Rayleigh
wave with displacements in the Sagittal plane and

pure Love waves exist for certain symmetry condi-
tions [111]. If the sagittal plane is a symmetry plane,
the Rayleigh wave is piezoelectrically coupled and
the Love wave is not. If the sagittal plane is normal
to a binary axis, the Love wave is piezoelectrically
coupled and the Rayleigh wave is not.

The propagation of waves in an initially stresseo
magnetoelastic conducting layer has been considered
[112], as has the propagation of the thermoelastic
waves in an infinite transversely isotropic circular
cylinder [113]. In the latter study the theory of
thermoelasticity was used to account for the inter-
action between the field of displacement and tem-
perature. The propagation of small amplitude waves
in an incompressible elastic medium subjected to a
large homogeneous equibiaxial stress has also been
investigated [114].

A method for solving the dynamical axisymmetric
problem in a nonhomogeneous elastic body has
been given [115]. Rayleigh surface waves were
considered in a body bounded by a plane; a parallel
plane surface bound a thin surface layer with dif-
ferent properties.

Propagation of Lamb and Love waves in an infinite
homogeneous micropolar elastic plate bounded by
two parallel free planes has been considered [116].
The displacement field u;, uz, 0 and a microrotation
field 0, O, ¢3 led to Lamb waves. A displacement
field 0, 0, u3 and a microrotation field ¢,, ¢;, O
led to Love waves.

The conditions for propagation of interface or
Stoneley waves between two thermoelastic half-
spaces have been studied [117]. The possible exis-
tence of a Stoneley mode at an unbounded interface
between two elastic half-spaces has been investigated
theoretically [118]. The Stoneley wave equation
for solid-liquid interfaces was also investigated
[119]). The ray theory was used to obtain an ap-
proximate solution to the elasto-plastic wave prob-
lem [120]. The propagation of shock and accelera-
tion waves in an isotropic viscoelastic homogeneous
medium has also been studied [121], as have mag-
netoelastic waves and disturbances in initially stressed
conducting media [122] . Rayleigh, Love, and Stone-
ley waves were included in the latter study. The
propagation of small-amplitude plane waves through
a homogeneous, isotropic elastic medium, having a




particular strain-energy function and subjected to a
large primary deformation produced by a homogen-
eous biaxial stress has been considered [123].

Sy, ‘elocities of a short period shear wave in the
lithosphere have been analyzed [124]. Waves with
a long period car travel well below the M-discontin-
uity as they seek a least time path. Propagation of
ground waves over a nonuniform overburden having
an arbitrarily variable complex dielectric coefficient
and depth has been analyzed [125] .

The propagation of Rayleigh waves in a half-space
and the propagation of Love waves in a welded layer
and half-space have been examined when initial
tensile or compressive stresses are present [126].
A modified Rayleigh equation and a modified Love
equation were obtained from perturbed and linear-
ized equations of elasticity that included the effects
of initial stress. The phase velocities of the waves
changed under initial tension or compression. A
similar problem in crystalline media has been ana-
lyzed [127]. Some interesting problems have been
reported {7, 128-152} .

The effect of microstructure on the propagation of
plane waves in a micropolar elastic half-space and
their reflections from a stress-free flat surface have
been studied [153] . Waves on the free surface and on
the division surface that originate as a result of action
of arbitrary disturbances of the basin bottom have
also been investigated [154]. Long and short waves
were treated separately. A cylindrical shear wave
has been analyzed [155]. Three approximate meth-
ods were proposed to solve the system of partial
differential hyperbolic equations of the first order
with two independent variables; Courant’s iteration
method, involving finite differences along charac-
teristics; direct integration of the relations along
characteristics; and the method of trapezoids.

Head waves in a large number of two-dimensional
and inclindec layer seismic models have been de-
scribed [156]. Expressions for the P- and S-wave
displacement field resulting from finite dynamic
Volterra dislocations have been derived [157]). A
second order approximation has been given for cal-
culating the excitation of finite amplitude standing
waves (without dissipation) in a solid layer {158].
The method allows for detection of amplitude/
modulated longitudinal and transverse waves caused
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by the nonlinear properties of the medium, The
dependence of damping on frequency was also
analyzed.

A method for determining the displacement and rota-
tion field that forms in an infinite micropolar elastic
medium as a result of the action of body forces and
body couples has been presented [159]. Axisym-
metric deformation of the body is also discussed.
Two-dimensional propagation of time-harmonic plane
waves through a plane horizontally-layered visco-
elastic medium has been described [160]. The
problem was formulated directly in terms of stresses
and displacements and was solved with matrix meth-
ods.

The propagation of shear (or compression) waves in
a plane-parallel layer of finite thickness was studied
by Sabodash [161]). The waves were excited by an
instantanecus displacement of points on the lower
plane, allowing for muitiple reflections of the fronts
from both boundaries of the layer. The material
in the layer obeyed the laws of linear viscoelasticity;
that is, the Kelvin-Voigt and Maxwell models. Sabo-
dash investigated stationary vibrations of the layer,
allowing changes in the physicomechanical properties
that affect the thickness of the nonhomogeneous
medium, and determined resonance frequencies.

A discrete continuum theory for periodically layered
composite materials has been formulated [162]. It
is based on a two-term truncated power series expan-
sion of the displacement field about the middle
plane of each layer. Two-dimensional equations of
motion were obtained for each layer. Appropriate
continuity conditions were introduced at the inter-
faces between neighboring layers before the governing
field equations for periodically layered media were
derived as a system of differential-difference equa-
tions. The propagation of plane harmonic waves in
an unbounded layered medium was also examined.

The Boltzmann constitutive representation is a
consistent way to incorporate dispersion effects into
mathematical models of wave behavior in layered
elastic media. Christensen [79] considered long
wavelengths with waves propagating normal to the
planes of layering. He derived special forms of a
general Boitzmann law for periodic layering and
onedimensionally random layering. He also re-
ported that no attenuation of harmonic waves oc-




curred in periodic media and presented an analysis
of attenuation in random media.

The surface wave in a semi-infinite micropolar elastic
solid embedded in a constant primary magnetic field
has been studied [163]. It was assumed that the
reduced frequency wave is so small that its first and
higher order terms can be neglected.

Exact solutions have been obtained for the displace-
ment field in an elastic half-space composed of two
quarter spaces welded together [164] . The configura-
tion is excited by a plane SH wave impinging upon
the discontinuity at an arbitrary angle. The Kontoro-
vich-Lebedev transform was used to obtain two
simultaneous integral equations that were solved
exactly. The discontinuity could enhance spectral
displacements up to a factor of two.

An intrinsic theory of wave propagation in linear
elastic surfaces has been developed [165], and used
to calculate various wave properties - velocities
shapes, and decay strengths for a three-dimensional
linear elastic solid. Equations describing an elastic
isotropic Cosserat continuum have been presented
[166, 167]. Solutions for various modes of plane
harmonic waves in an infinite medium are discussed,
and the surface-wave solution for straight crested
waves on a Cosserat half-space is developed and
interpreted. A wave analogous to the classical Ray-
leigh wave exists except that it is dispersive. The
phase velocity of the surface wave could increase
or decrease with frequency, depending on the relative
magnitude of the micromaterial moduli.

A method for calculating the surface elevation
associated with long waves on a rotating earth when
fluid is created or passes over geometrical boundaries
has been published [168]. Tables for spectral dis-
placements of seismic surface waves from shear
dislocations in flat multilayered earth models have
been prepared [169], and dynamic photoelastic
measurements of Rayleigh-wave propagation in a
series of 17 seismic models of wedges have been
described [170] .

Heat is exchanged when fluids flow through frac-
tures in impermeable rock. The fundamental equa-
tions governing the transport of heat in such systems
have been derived [171]. The occurrence of weak
oscillations in the flowing fluid were studied with a

perturbation method. The response of a layered
elastic half-space to a progressive exponentially de-
caying normal surface pressure has been evaluated
[172]. The constant velocity V of the moving pres-
sure was greater than that of the P and S waves,
respectively, in the upper layer (super seismic) and
smaller in the underlying half-space (subseismic).

Simplified one- and two-dimensional models of
time-dependent propagations of disturbances on
glaciers have been analyzed by Lick [173]. He gave
limiting solutions for short- and long-wavelength
disturbances and showed that shori-wavelength
disturbances diffuse but do not travel relative to the
glacier surface. He calculated surface height and
speed for specific conditions at the ice-rock inter-
face.

The transmission of stresses associated with Rayleigh
waves has been considered [174]. The possibility
of using the ellipticity of Rayleigh-wave particle
motion for determining earth structures has been
studied [175], as have surface displacements in the
near field due to an arbitrarily oriented fault model
in a multilayered medium [176] .

A dispersion equation has been derived [177] for
surface waves of small amplitude for a semi-infinite
incompressible elastic medium subjected to a large
primary extension (or compression) in a direction
Ox; parallel to the free surface Ox;x,. When the
direction of propagation approached Ox,, the sur-
face wave displacement was almost parallel to Ox,;
i.e., nearly transverse to the direction of wave propa-
gation,

The parametrization of the seismic rays in an elastic,
heterogeneous isotropic medium was derived from
the eikonal equation and used to formulate equations
for travel time and energy per unit area of wave
front [178). The cases of sub-shear, super-shear,
subsonic, and supersonic propagation of a crack were
considered [179]. Applications of the solution to
earthquake problems were discussed.

In a study of dispersion effects on uniaxial propaga-
tion in spatially heterogeneous periodic elastic
media [180], the frequency dependence of the wave
phase velocity was a power series valid for small
frequencies. A simple algorithm for rapidly and
exacting computing the attenuation factors of tor-
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sional free modes has been developed [181]. Cal-
culations for torsional modes having radial order
numbers (j) from 1 to 10 and angular order num-
bers (v) up to 300 show that, for periods less than
120 sec, the attenuation factor (but not p) is ap-
proximately independent of the radial order number
when the angular order number is less than 20. For
low angular order numbers and a radial order number
greater than one, both period and attenuation factor
are roughly independent of angular order number
for a given value of .

The propagation of compression waves in a weakly
conducting magnetoelastic medium in a magnetic
field, to which a distributed load in the form of a
Heaviside function is applied, has been studied
(182]. Laplace transforms were used and an asymp-
totic solution was obtained for small time intervals
by expanding inverse transform parameter indices
in the image space and reverting to the original
solution.

The two-dimensional propagation of Stoneley waves
along a perturbed interface between two semi-
infinite isotropic media has been considered [183].
The interface was perturbed by potential functions;
perturbation technique was used to obtain the role
of the perturbation in the propagation. Expressions
for the components of the total strain due to per-
turbed and unperturbed contributions were obtained,
and, the period equation for the perturbed interface
was considered.

Plane harmonic waves in a rotating elastic medium
have been studied [184]. When centripetal and
Coriolis accelerations were included in the equa-
tions of motion, the medium behaved as if it were
dispersive and anisotropic. The general techniques
for tresting anisotropic media were modified, to
obtain results for slowness, surfaces, energy flux,
and mode shapes. The concepts were applied in a
discussion of the behavior of harmonic waves at a
free surface.

The propagation of nonlinear waves in a semi-space
when a stepwise and moving material with super-
sonic velocity loading acts at the boundary was
studied [185). It was assumed that the material
(s0il) obeys the deformation theory of plasticity.
The non-linearity of the material of the semi-space
and the elastic problem create a jump variation of
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the normal stress on the transverse wave.

A model for the mantle allowed the shear velocity
to attain a minimum and then increase in accordance
with Lehmann’s observations [186]. If the small
variation were periodic, it would generate G waves.
But in the model, the waves were filtered. P- and
S-waves travel-times from shallow- and deep-focus
earthquakes at a distance of 5° to 25° have been
interpreted, and surface waves have been observed
[187]. T, or seismic water, waves generated by
deep-focus earthquakes have been observed by
sensitive ocean-bottom seismographs in the basin
of the western Pacific.

Seismic interference waves corresponding to a layer
in which wave velocity increases and which had a
thickness from one to several wavelengths have been
studied [188]. The focus and origin of an earthquake
and the (apparent) velocity of an elastic wave were
calculated from measurements of arrival times. The
dynamic characteristics of surface Rayleigh waves
were used in a study of heterogeneity of crustal
structure and the existence of fractured zones within
the mountainous region of the Crimea {189]. The
propagation of elastic waves in a porous, saturated
elastic (or anelastic) medium has been investigated
[190]. The stress equations of motion were solved
by the power series method [191] for a nonhomo-
geneous, isotropic, elastic semi-space. The period
equation for Rayleigh waves was also derived.

Elastic properties of the media were assumed to
change slowly along the horizontal directions and
boundaries of the layers were slightly bent in one
study [192]. The vertical distribution of the wave
intensity was described by an eigenfunction of the
Sturm-Liouville boundary value problem. The propa-
gation of the wave along the surface was studied by
the ray theory. Transfer equations describing a
change of intensity along the rays were solved.

A linear long-wave equation was solved for arbitrary
ground motion on a uniformly sloping beach [193].
Near-shore large-amplitude waves were also inves-
tigated using nonlinear theory. A waveguide problem
of a surface wave was solved using the antisymmetry
principle of infinite space [194). The closed form
solution was obtained in an asymptotic form. The
appearance of the surface wave was also determined.
The change of wvelocity of two shear waves propa-
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gating in an isotropic elastic body with initial uni-
axial stresses was investigated using second order
elasticity theory [195]. Wave velocity was measured
in steel specimens in axial tension and compression.
The properties of simple elastic media in motion
differ from those not in motion because of the
compressional and shear wave velocities produced
by the motion.

A WKB solution was derived for elastic waves propa-
gating into a nonhomogeneous elastic medium (196] .
Both plane harmonic waves in unbounded media
and Rayleigh surface waves propagating along a
half-space consisting of linearly elastic materials
that conduct heat have been considered [197].
Harmonic P- and SV-plane nonhomogeneous waves
that propagate in linear viscoelastic media have
been investigated [198]. Miscellaneous problems of
interest have been studied [87, 181, 199-234].

A 1970 seismic survey at the reclaimed Port Island
of Kobe Harbour included measuring the velocity
of shear waves propagated in near-surface layers
consisting of reclaimed granite soil alternating with
silt, sand, and gravels [235]. A model showing
the distribution of P-wave velocities in the upper
mantle beneath the Australian Shield was constructed
to fit the travel times of the first waves to arrive
from major regional earthquakes.

Irregular Boundaries and Wave Propagation

The effect of irregular boundaries on the propaga-
tion of waves in an elastic medium is important
in seismology. Because of the complex mathematics
involved, however, investigations have been con-
centrated on slightly curved boundaries. The dis-
placement vector therefore consists of two parts:
one is the same as that for plane boundaries and the
other accounts for additional effects due to nonzero
curvature of the boundary.

Sato [236] studied the propagation of Love waves
in a layer with an abrupt change in thickness; De-
Novyar [237] considered propagation in a layer over
a half-space with a sinusoidal interface. Kuo and Nafe
(238] investigated the propagation of Rayleigh
waves in a similar model. Obukov [239] considered
the effect of a wavy boundary.

The effect of a curved boundary in the presence of
a buried line source has been studied {240, 241}.

Similar problems have been approached with dif-
ferent techniques and simpler models [242-244) . In
one case [245) a finite difference approximation
of the elastic equations of motion was used to solve
various wave propagation problems that had been
solved analytically. The method was extended to
the problem of Love waves propagating across an
ocean continent.

The perturbation technique was used {245] to study
the propagation of Love waves in a layer of non-
uniform thickness lying over a half-space. A simple
but rigorous derivation was given for wave scattering
incident at the nonhomogeneity. The theory is
applicable to a nonhomogeneity of any shape. A
finite element technique was developed [243] to
study the propagation of Love waves across non-
horizontally-layered structures,

Takahashi [245] solved the eigenvalue problem
for Love waves at a hyperbolic interface between
the upper layer and the mantle. Knopoff and Mal
[246] discussed Love-wave propagation in a single
layer of variable thickness overlying a half-space;
they assumed that both the layer and the half-
space are composed of homogeneous materials
and that either the interface or the free-surface is
plane.

Reflection by irregular surfaces has been considered
[247-251]. De [252] examined the influence of
boundary perturbation on the propagation of Love
waves in a medium containing various irregularities.
The propagation of Love waves over the circular
cylindrical surface of a layered earth model con-
taining cylindrically aeolotropic material has been
studied [253], as was change in the dispersion
equation due to harmonic variation in the thickness
ot the cylindrical crustal layer when the earth is
composed of anisotropic material. The effect of
periodic irregularities of a boundary on scalar waves
has been discussed [254]. Fourier transforms were
used to obtain a double integral that was approxi-
mated by the saddle point method to produce a
geometrical picture.

Handelman [255) studied surface waves over a
slightly curved elastic half-space with the perturba-
tion technique. The first order correction terms are
a sum of three waves: one is the ordinary surface
wave, the second is a cylindrical shear wave with @
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diminishing amplitude, and the third is a cylindrical
dilatation wave with a diminishing amptitude. Similar
problems of interest have been published [178,
247,255-267]) .

The exact solutions for some elastodynamic problems
involving circular cylinders have been published
[266]; the Rayleigh wave contribution was isolated.
Propagation velocity diminished as the ratio between
waveleny d radius of curvature diminished and
reached an asymptotic value at zero wavelength.
By comparison, the small-wavelength asymptotic
approach of Keller and Karai [268] does not account
for dispersion, and a critical or cutoff wavelength
exists above which no proper Rayleigh wave can
exist. Thus, a Rayleigh wave that propagates toward
a point of minimal radius on an interface with vari-
able curvature can be scattered and partially trans-
formed into body waves.

Certain theoretical studies of the propagation of
Rayleigh waves on a cylindrical surface have shown
that the curvature is more important for waves with
very short periods [264]. Experimental verifica-
tion on two-dimensional models confirmed these
results. On a concave cylindrical surface, Rayleigh
waves with complex wave numbers are damped and
undergo inverse dispersion in the direction of propa-
gation [263] .

The diffraction of normally incident longitudinal
and antiplane shear waves by two parallel and co-
planar Griffith cracks embedded in an infinite,
isotropic, and homogeneous elastic medium has
been investigated [260]. Dynamic propagation
of screw-like crack in relation to a crack-resistance
force has also been examined [269]. Experiments
have been conducted on the influence of differential
pressure on the passage of longitudinal and trans-
verse waves across fractures [270] .

It has been suggested [266] that the dispersion of
surface wave propagating along a rough plane surface
of an elastic solid is attributable to perturbations
caused by the roughness in the deeper region of
the solid. The arguments in favor of this suggestion
are based on the Rayleigh principle.

The crust and mantle are nonhomogeneous in both
vertical and horizontal directions and contain curved
seismic interfaces and block structures. Several

approximate and numerical methods have been
applied to practical seismological problems when
analytical solutions fail [271]. The ray method is
used to calculate rays, travel times, amplitudes, and
seismograms. The numerical finite difference method
has been combined with the perturbation method
to study diffraction of elastic waves on elastic wedges
and hollow cylinders. These methods have advantages
and limitations [271]. The Wiener-Hopf technique
has been used [257) to examine diffraction by a
nonplanar boundary.

A formal asymptotic theory valid at high frequencies
has been developed by Gregary [258] to account for
the propagation of time-harmonic Rayleigh surface
waves over the general smooth free surface ¥ of a
homogeneous elastic solid. He showed that these
Rayleigh waves can be described on L by a system
of surface rays that are geodesics of X. The waves
are dispersive. Gregary derived an explicit first-order
dispersion formula

“he method of matched asymptotic expansions has
been used [267] to study scattering of plane SH
waves by topographic irregularities of a restricted
range in an otherwise plane half-space when the
characteristic length of the irreqularity is much
smaller than the wavelength of the incident wave.
Results are given for irregularities in the shape of
triangles, trapezoids, and semicircles. The scattering
of surface waves by mass defects has been estimated
as a function of frequency and defect depth [272].
Attenuation of surface waves of microwave fre-
quencies on polished surfaces is also discussed. Mast
of the energy was scattered into other surface waves --
rather than body waves -- so that the energy of the
surface waves passes into the interior relatively
slowly. (This could explain the duration of seismic
signals on the moon after the lunar excursion module
crashed during the Apollo 12 mission.)

An integral equation for the transmission of SH waves
across a step-like irregularity in the surface of the
elastic half-space has been derived (273]. A perturba-
tion method was used [274] to study the scattering
of plane waves by small surface imperfections on an
elastic half-space. The solution of the first order
approximation is given as convolution integrals of
the surface imperfection with kernel functions de-
fined by Fourier inversion integrals. The scattered
far-field displacements are obtained explicitly for




arbitrary imperfections. (The scattered fiald con-
sists of a Rayleigh surface wave and four body
phases that travel with the speed of dilatational
or distortional waves at the free surface.)

It has been shown ([275] that random nonhomo-
geneities in an elastic half-space generate scattered
P and S waves when excited by a spherical P wave
initiated at the surface. The scattered energy is
characterized by statistical correlations of the dis-
placement components at two receivers on the
free surface. Simple expressions were obtained for
the correlations on the basis of assuming far-field
Rayleigh scattering using a simple perturbation
theory, and neglecting boundary effects.

The motion caused by a point source and a source
of finite extent in an elastic half-space with a cor-
rugated boundary was obtained [276] and com-
pared with the motion in a flat half-space. The
method was a combination of a perturbed theory
and a finite difference method. The effect of cor-
rugation on body and surface waves was also in-
vestigated.
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BOOK REVIEWS

LIMIT ANALYSIS USING FINITE
ELEMENTS

Proceedings of a symposium presented at the
ASME Winter Annual Meeting, December, 1976
Edited by R.H. Mallett

Finite element methods for elastic/perfectly-plastic
(EPP) models are available, but they are expensive,
time-consuming, and in some cases provide for
more information than is desired. If the simpler
rigid/perfectly-plastic (RPP) model is used, ordinary
solution methods break down because stresses in a
rigid region are not generally unique.

In pre-computer days, the theorems of limit analysis
were used to obtain upper and lower bounds on the
yield-point load of an RPP model which, in many
applications, is a good approximation of the true
carrying capacity of a real structure. The six papers
in this volume are concerned with the use of the com-
puter as a means for efficiently finding good bounds
on the yield-point loads of complex structures. The
papers differ in their emphasis on upper and/or
lower bounds, in the type of problem considered,
in the finite elements used, and in the extent to
which the bounding principle is conserved. Several
of the papers point out that when a nonlinear yield
condition is used, a lower bound approach may not
provide a true lower bound on the model, and for
any yield condition it may not provide a true lower
bound for the original continuum.

The paper by Anderheggen defines the element
arrangement and then considers both stress and
velocity fields. A piecewise-linear yield condition
is assumed. The two bounding theorems lead to a
primal-dual formulation of a linear programming
problem. The primal and dual each lead to the exact
yield point load for the model, and intermediate
steps provide upper or lower bounds, but there is
no guaranteed relation between the model and
continuum yield-point loads. Applications are given

to various triangular and quadrilateral elements
for two-dimensional problems.

Biron’s paper is concerned with a lower bound ap-
proach to shells. For rotationally symmetric shells
he uses a nonlinear yield condition, and his method
provides a true lower bound for the shell. An essential
feature of the approach is that the equilibrium equa-
tions can be solved exactly for the circumferential
stress and moment. He points out that this feature
does not extend to more general shell problems;
therefore, a lower bound approach no longer provides
a true bound for the shell, although it may furnish
a good approximation.

In the third paper, Hutala points out that, rather
than regard the yield condition as constraint, any
equilibrium solution can be used and the maximum
yield function found; then parameters are chosen
to minimize this maximum, Assuming the Mises yield
condition and using a de Veubke quadrilateral ele-
ment with a cubic stress function, he reduces this
max-min problem to a sequence of steps involving
solution of linear equations and minimization with
respect to a single parameter. He also formulates an
upper bound approach that is mathematicallly
similar and can use the same computer program. Both
approaches give true bounds on the continuum
solution.

A paper by Zavelani-Rossi, Peano, and Binda gener-
alized the de Veubke element to the general rotation-
ally symmetric problem by adding a secondary linear
stress function. A piecewise-linear yield condition
is assumed. The lower bound approach is reduced
to a linear programming problem that provides a
true lower bound for the continuum,

In the fifth paper Peano uses a lower bound approach
with piecewise-linear yield conditions. He is con-
cerned with the computational comparison of several
different element models, all of which are essentially
triangular with linear stress fields, and all of which
yield true lower bounds via the dual formulation of
a linear-programming problem. As a simple measure
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of computational efficiency, he defines a number
B as the number of degrees of freedom F per vertex
(for an infinite domain) divided by the number of
independent parameters; i.e., by F minus the num-
ber of equilibrium constraints E per vertex, g =
F/(F-E). The smaller value of 8, the more efficient
the model. He examines seven models, beginning
with the simplest one, in which vertex stress com-
ponents are the independent variables that lead to
a B value of 7. The basic goal is to reduce the num-
ber of free parameters and constraints by auto-
matically satisfying certain equilibrium require-
ments; various ways of doing this lead to 8 values
of 6, 4, 3, and 1.6. This last value is again the de
Veubke model in which triangular elements are
formed from quadrilateral ones by construction of
the diagonals. Two further models use stress func-
tions rather than stress components as the starting
point. The de Veubke quadrilateral with stress
function gives § = 1, which is optimal. However,
certain problems can occur for multiply connected
domains.

The final paper, by Robinson, differs from the
others in that it is concerned more with results than
with methods. He considers the problem of two
intersecting cylindrical shells under internal pressure.
He computes approximate lower bounds for a wide
variety of the parameters a/R, t/T, and B/T (a and
R are radii of the two shells; t and T are their thick-
nesses) and compares them with available experi-
mental and theoretical upper bound results.

Taken as a whole, this volume is a valuable addition
to the literature. All of the articles concentrate on
the essential ideas presented and refer to other
sources for details. The bibliographies appear per-
tinent. Anyone interested in the challenge of using
finite element models for direct information on
the vyield-point load of structures should certainly
start with this volume. The use of listed references
for details related to a particular problem of interest
should provide a good background for either the
solution of practical problems or further research
in this area,

Philip G. Hodge, Jr.

Professor of Mechanics
University of Minnesota
Minneapolis, Minnesota 55455

MECHANICS OF VISCO-ELASTIC
MEDIA AND BODIES

IUTAM Symposium, Gothenburg, Sweden, 1974
Springer-Verlag, 1975, Editor, Jan Hult

This reviewer, having attended the Symposium, is
now also reviewing its proceedings. The Symposium
was intended as a forum for specialists from various
countries with common interests in the subject of
viscoelasticity and was not restricted to the area of
shock and vibration. Indeed, of the 34 articles pub-
lished, perhaps six have to do with shock and vibra-
tion.

Johnson considered the small amplitude vibrations of
prestrained viscoelastic solids. This basically involves
an analysis of small disturbances about equilibrium
states that are given a general definition. The con-
stitutive relation considered seems sufficiently general
to include the responses of most real materials. Datta
considered the behavior of progressive waves in an
elastic medium with fluid-filled cavities. The fluid is
viscous, and, in a two-dimensional context, the
cavities are cylindrical. The problem seems somewhat
idealized, however, and the possibility for real appli-
cations are limited. Habip considered the behavior
of progressive waves in particulate composites con-
sisting of elastic and viscoelastic solids. In particular,
he gave attenuation and phase velocity as functions
of frequency and the properties of the constituents.

Nonlinear considerations are given in two articles --
one by Ting, Chen, and Schuler and the second by
Engelbrecht and Nigul. The latter paper was not
presented at the Symposium, as is the common
practice of Russians.

Ting considered the evolutionary behavior of propa-
gating singular surfaces of all orders in nonlinear
viscoelastic bodies. The constitutive relation is
general, and the results reflect its influences on the
behavior of the singular surfaces. Chen and Schuler
gave an experimental procedure whereby some of
the properties of the stress-relaxation function can be
determined using the properties of composites
without explicit constitutive relations. Engelbrecht
and Nigul summarized the evolutionary behavior
of shock discontinuities in various media including
viscoelastic ones. Their results are by no means
original and have been published elsewhere.
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The proceedings also contain articles concerning
nonlinear viscoelastic constitutive relations, aging,
creep, and a finite element method for two-dimen-
sional problems. These articles contain both theore-
tical and practical material.

Peter J. Chen

Explosives Physics Div. 5131
Sandia Laboratories
Albuquerque, New Mexico 87115

RESONANCE OSCILLATIONS IN
MECHANICAL SYSTEMS

R.M. Evan-lwanowski
Elsevier Scientific Pub., The Netherlands, 1976

This book presents, in eight chapters, a compre-
hensive treatment of resonance oscillations. The
chapter headings are:

Chapter 1. Background. Basic Concepts

Chapter 2. Method of analysis

Chapter 3. Dynamic resonances, v = (p/q)w

Chapter 4. Parametric main resonance

Chapter 5. Combination resonances

Chapter 6. Combination differential resonances

Chapter 7. Internal resonances

Chapter 8. Parametric main and combination
resonances oscillations in structures

The methodology applied throughout the book,
whi~h is based in large part on the research of Profes-

sor Evan-lwanowski and his students, is that of asymp-

totic analysis. However, the mathematics is based on
both physical intuition and experimental results.

The book production is somewhat disappointing. This
reviewer, at least, is not wildly enthusiastic about
expensive ($29.75), hard-cover books that are not
type set but photographed from (apparently) author-
prepared typescript. Nevertheless, for those interested
in nonlinear resonant responses of discrete systems,
this book will be useful.

Clive L. Dym

Department of Civil Engineering
University of Massachusetts
Ambherst, Massachusetts 01003

INDUSTRIAL NOISE CONTROL
HANDBOOK

P.N. Cheremisinoff and P. Cheremisinoff
Ann Arbor Science, Ann Arbor, M|, 1977
$29.50

The authors state that this book was designed for use
by consultants, planners, students, and engineers
faced with industrial noise problems. Unfortunately,
it really does not meet the needs of any of these
groups. Although the book is designated as a ‘‘hand-
book,” it is really better described as a survey. The
19 chapters -- including subjects such as noise legis-
lation, personal safety devices, noise reduction with
lead, fundamentals of vibration, and noise level
interpolation and mapping -- treat many specific
topics in an extremely superficial way.

This reviewer chose several problems that might be
encountered in industry so that the book’s usefulness
as a handbock could be demonstrated. For example,
| tried to find solutions to, or guidance for, the
following ‘‘typical’’ situations: quieting a noisy
induced-draft fan; reducing noise transmission be-
tween offices; determining the source of noise in a
compressor/gearbox pair and eliminating the prob-
lem; surveying and controlling community noise;
initiating a noise control and/or a hearing conserva-
tion program with regard to equipment, personnel,
etc; obtaining information on various noise control
materials; finding further references. These prob-
lems are not uncommon and one would expect a
handbook to provide answers to most of these
problems. Unfortunately, there is nothing in the
index on ‘‘gears,’” ‘‘diagnostics, materials,” “‘ref-
erences,’” “‘community noize,” or “fans.” On the
other hand ‘‘compressors,’’ “‘construction site noise,"”
and ‘‘nylon gears’' are listed. Thus, for some topics
the reader might find some information by the use
of the index, while other topics would require either
a more refined descriptor or a thorough browsing.

o

As one looks at the text it is quite obvious that
some of the treatments of those items found in the
index are very sketchy. For example, the ‘‘com-
pressor’’ topic has about one and a half pages total
coverage; one and quarter pages on a compressor
noise abatement installation (which seems to be
taken from a consultant’s brochure) and one quarter
page on the advisability of using a ‘‘floating floor’*
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for a compressor when it is mounted on the top
of a building. This is definitely not sufficient informa-
tion to develop any noise control technique for
compressors. Most of the other topics mentioned
above are similarly treated, although there are a few
topics that are covered thoroughly.

Many of the chapters have been written by ‘‘con-
tributors’’ and are very specific in their discussion.
For example, the chapter on enclosures includes
only the use of lead and there is a chapter discussing
only noise reduction by glass. The former was taken
mostly from brochures of lead industries and the
latter was authored by a glass company employee.
The chapter on additional sound control materials
includes foam, polymer fills, acoustical panels, and
nylon (used only in reference to gears). There is no
mention of the use of plywood, sheet steel, gypsum
bcard, aluminum, glass fiber, and several other
commonly used materials for noise control. Further-
more, some of the more recent works on noise
control materials are not cited.

The chapters dealing with fundamentals seem too
basic and are actually too short to give the reader
a thorough understanding of the physics involved.
If one is familiar enough with the field to use a
handbook and not require an elementary text, one
would expect a rather sophisticated approach to the
“fundamentals” to refresh the reader’s first know-
ledge or to provide information as to where the
reader can obtain elementary knowledge. Some of
the figures are too simplistic. For example, in one
figure, there is a box that surrounds the word ‘’noise’’
attached to an arrow that leads to a box that sur-
rounds the words ‘‘protective device'’ which then is
attached to an arrow that leads to a box surrounding
the word ‘‘ear,”” illustrating the ‘‘acoustic problem
in general.”” The book is also filled with so-called
case histories, not in enough detail to reproduce
the solutions, but rather to show, superficially,
what others have done. Most of the case histories are
complete with brand names and the companies
that make them. Normally this would be very handy
but it appears more to be an exercise in company
exposure than a means of technology transfer. Many
of the references found at the end of most chapters
are merely engineering brochures or sales brochures
of materials- (and/or applications-) oriented firms.

There are some useful chapters, the figures in general

are clear, and many of the explanations are reason-
ably simple. However, the book does not do two
major things: it does not tell you how to pick noise
control components correctly, and it leaves out
several important concepts that would be of use to
noise control engineers or acousticians who need
information on component or system noise control.
It appears that the majority of references are not to
basic journals, magazines, or texts in the field but
rather are references to sales brochures. This reviewer
was surprised to see no mention of the major jour-
nals, magazines, or associations that are valuable to
those who need information on noise control.

Cyril Harris is planning to issue a new edition of
his Handbook of Noise Control. It is recommended
to the reader contemplating the purchase of a hand-
book in noise control that he or she wait for Har-
ris’s new book. This /ndustrial Noise Control Hand-
book can be of some use as a reference source if one
does not have access to a collection of articles or
textbooks that have appeared in recent years. This
reviewer, however, would prefer to scan the indexes
of the magazines/journals that relate to the field.

Richard J. Peppin
1711 Westwind Way
MclLean, Virginia 22101

Reprinted from JASA, 63 (2), p 645 (Feb 1978)
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SHORT COURSES

JULY

NOISE CONTROL ENGINEERING

Dates. July 31-August 4, 1978

Place: Univ. of Michigan, Ann Arbor, M|
Objective: This course provides engineers and
managers with comprehensive knowledge of noise-
control engineering and criteria for application to
practical problems.

Contact:  Engineering Summer Conferences, 200
Chrysler Center, North Campus, The University of
Michigan, Ann Arbor, MI 48109 - (313) 764-8490.

AUGUST

PYROTECHNICS AND EXPLOSIVES

Dates: August 14-18, 1978

Place: Philadelphia, PA

Objective: This seminar combines the subjects of
pyrotechnics and solid state chemistry along with
explosives and explosive devices. It will be practical
SO as to serve the men working in the field. Presenta-
tion of theory is restricted to that necessary for an
understanding of basic principles and successful
application. Coverage emphasizes recent effort,
student problems, new techniques, and applications.
The prerequisite for this seminar is a bachelor of
science degree in engineering or equivalent.

Contact: Registrar, The Franklin Institute Re-
search Labs., Philadelphia, PA 19103 - (215) 448-
1236.

FUNDAMENTALS OF NOISE AND VIBRATION
CONTROL

Dates: August 21-25, 1978

Place: Massachusetts Institute of Technology
Objective: This program is designed to provide a
background in those aspects of sound and vibration
that are important to noise control engineering.
The major subjects of discussion are sound generation

and propagation, vibration of structures, and inter-
action of structures and sound. The vibration of
simple structural elements and the relation of these
vibrations to interaction with the sound field will
be covered. The general approach is based on engi-
neering concepts rather than theoretical analysis.

Contact: Office of the Summer Session, Room
E19-366, Massachusetts Institute of Tech., Cam-
bridge, MA 02139 - (617) 253-2101.

SEPTEMBER

7TH ADVANCED NOISE AND VIBRATION
COURSE
Dates: September 11-15, 1978
Place: Institute of Sound and Vibration Re-
search, University of Southampton, UK
Objective: This course is aimed at researchers and
development engineers in industry and research es-
tablishments, and people in other spheres who are
associated with noise and vibration problems. The
course, which is designed to refresh and cover the
latest theories and techniques, initially deals with
fundamentals and common ground and then offers
a choice of specialist topics. The course comprises
over thirty lectures including the basic subjects of
acoustics, random processes, vibration theory, subjec-
tive response and aerodynamic noise which form the
central core of the course. In addition, several special-
ist applied topics are offered, including aircraft noise,
road traffic noise, industrial machinery noise, diesel
engine noise, process plant noise and environmental
noise and planning.

Contact: Dr. J.G. Walker or Mrs. 0.G. Hyde, Inst;
tute of Sound and Vibration Research, The Univer-
sity, Southampton, S09 SNH, England.

MACHINERY VIBRATION

Dates: September 20-22, 1978
Place: Cherry Hill, New Jersey

-
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Objective: Lectures and demonstrations on rotor-
bearing dynamics, turbomachinery blading, and
balancing have been scheduled for this Vibration
Institute-sponsored seminar. The keynote address on
the development of balancing techniques will ba given
on the first day along with sessions on modal analysis,
oil whirl, and computer programs. Simultaneous
sessions on rotor-bearing dynamics and turboma-
chinery blading will be held on the second and third
days. The following topics are included in the rotor-
bearing dynamics sessions: critical speeds, stability,
fluid film bearing design and analysis, balancing
sensitivity, generator rotor balancing, gas turbine
balancing, and industrial balancing. The sessions on
turbomachinery blading feature excitation and forced
vibration of turbine stages, structural dynamic as-
pects of bladed disk assemblies, finite element analy-
sis of turbomachinery blading, steam turbine avail-
ability, metallurgical aspects of blading, torsional-
blading interaction, and field tests of turbogenerator
sets. Each participant will receive a proceedings cov-
ering all seminar sessions and can attend any combin-
ation of sessions.

Contact: Vibration Institute, 101 W. B5th St.,
Suite 206, Clarendon Hills, 1L 60514 - (312) 654-
2254,

OCTOBER

MACHINERY VIBRATION SEMINAR

Dates: October 24-26, 1978

Place: MTI, Latham, New York

Objective: To cover the basic aspects of rotor-bear-
ing system dynamics. The course will provide a funda-
mental understanding of rotating machinery vibra-
tions; an awareness of available tools and techni-
ques for the analysis and diagnosis of rotor vibra-
tion problems; and an appreciation of how these
techniques are applied to correct vibration problems.
Technical personnel who will benefit most from this
course are those concerned with the rotor dynamics
evaluation of motors, pumps, turbines, compressors,
gearing, shafting, couplings, and similar mechanical
equipment. The attendee should possess an engineer-
ing degree with some understanding of mechanics
of materials and vibration theory. Appropriate job
functions include machinery designers; and plant,
manufacturing, or service engineers.

Contact: Mr. P.E. Babson, Mktg. Mgr., Machinery
Diagnostics, MTI, 968 Albany-Shaker Rd , Latham,
NY 12110 - (518) 785-2371.

NOVEMBER !

DIGITAL SIGNAL PROCESSING
Dates: November 6-10, 1978
Place: The George Washington University
Washington, D.C.
Objective: The course is designed for engineers,
scientists, technical managers, and others who desire
a better understanding of the theory and applications
of digital signal processing. The objective of this
course is to provide the participants with the essen- {
tials of the design of IIR and FIR digital filters, |
signal detection and estimation techniques, and the
development of Fast Fourier Transform Algorithms.
The applications of digital signal processing to speech i3
processing will also be discussed. The mathematical |
concepts needed for understanding this course will 5
be developed during the presentation.

Contact: Continuing Engineering Education Pro-
gram, George Washington University, Washington, &
D.C. 20052 - (202) 676-6106 or toll free (800) 424- i
9773.

VIBRATION AND SHOCK TESTING

Dates: November 6-10, 1978

Place: Washington, D.C.

Objective: Lectures are combined with physical
demonstrations: how structures behave when me-
chanically excited, how input and response forces
and motions are sensed by pickups, how these electri-
cal signals are read out and evaluated, also how
measurement systems are calibrated. The relative
merits of various types of shakers and shock machines
are considered. Controls for sinusoidal and random
vibration tests are discussed.

Contact: Wayne Tustin, Tustin Institute of Tech.,
Inc., 22 East Los Olivos St., Santa Barbara, CA
93105 - (805) 963-1124.
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NEWS BRIEFS

SAE MEETING
TO FEATURE DYNAMIC SESSIONS

The SAE Technical Committee G-b, Aerospace
Shock and Vibration, is organizing two sessions to
be presented at the 1978 SAE Aerospace Engineering
& Manufacturing Meeting November 27-30, 1978,
Town and Country Hotel, San Diego, California.
The titles of the two sessions are: Modal Vibration
Testing/Analysis and Seismic Testing/Analysis. Infor-
mation on the finalized program may be obtained
from R.W. Mustain, Rockwell International Space
Div., M.S. AB97, 12214 S. Lakewood Bivd., Downey,
CA 90241.

CALL FOR PAPERS
SEVENTH VIBRATION CONFERENCE
DESIGN ENGINEERING DIVISION
American Society of Mechanical Engineers

The seventh biennial ASME Conference on Mechani-
cal Vibration is scheduled to be held as part of the
1979 Design Technical Conference in St. Louis, MO
on September 9-12, 1979. The St. Louis Section of
ASME will be host.

The theme of this conference, like the past confer-
ences, will be the applied aspects of vibration engi-
neering. Emphasis will be on technology and exper-
ience associated with real apparatus, systems and
problems.

Technical papers are solicited in the areas indicated
below. Abstracts should be submitted to the appro-
priate Subcommittee Chairman on ASME Form
M & P 1903 by October 1, 1978. Form M & P 1903
is available from ASME, 345 E. 47th Street, New
York, NY 10017 - (212) 644-7722 or from the Sub-
committee Chairmen.

Overseas contributors may obtain this form from
the appropriate overseas representatives listed below.
Abstracts of papers of very broad interest or which
do not fall into the topic areas listed below should

news on current
and Future Shock and
Vibration activities and events

be submitted to the Conference Chairman.

Complete manuscripts, in quadruplicate, are due by
1 December 1978 to the Subcommittee Chairman.
Accepted papers will be preprinted for the conference
and will also be considered for publication in the
Journal of Mechanical Design.

Conference Chairman
Professor F.C. Nelson
Department of Mechanical Engineering
Tufts University
Medford, MA 02155
(617) 628-5000 Ext. 240

Overseas Representatives

United Kingdom
Dr. D.J. Mead
Dept. of Aeronautics and Astronautics
University of Southampton
Southampton S09 5NH, England

Europe
Professor M. Lalanne
Laboratoire de Mecanique des Structures
Institut National des Sciences Appliquees
de Lyon
69621 Villeurbanne, France

Representatives will also be appointed for
South America, India, and Japan.

Rotating Machinery
Balancing; stability; foundation interaction;
crack propagation and fatigue; synchronous and
non-synchronous response; vibration control
with damped rotor-bearing systems; torsional
vibration

Dr. E.A. Bulanowski

Research and Advanced Product Development
Delaval Turbine, Inc.

853 Nottingham Way

Trenton, NJ 08638

(609) 587-5000 Ext. 3526
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Vibration Reduction and Control

Passive and active vibration isolators; vibration
absorbers; design of dampers and damping
treatments

Professor C.B. Basye

UMR Graduate Center, St. Louis
8001 Natural Bridge Rd.

St. Louis, MO 63121

(314) 453-56431

Structural Dynamics

Advances in the solution of vibratory systems;
sub-structure methods; synthesis of vibrating
systems; the use of calculators and mini-com-
puters

Professor V.H. Neubert

Dept. of Engineering Science and Mechanics
Pennsylvania State University

University Park, PA 16802

(814) 865-6161

Finite Element Vibration Analysis

Finite element application to industrial prob-
lems; state-of-the-art reviews for particular
industries or technical areas; novel applications
of the method

Dr. J.A. Wolf, Jr.

Dr. M.M. Kamal

Engineering Mechanics Department
General Motors Research Laboratory
Warren, M| 48020

(313) 575-3357 (Wo!f)

(313) 575-2929 (Kamal)

Mechanical Signature Analysis

Diagnostic techniques; defect identification;
analytical and computational methods; applica-
tions to rotating machinery, structural testing,
process monitoring and noise abatement

Dr. S. Braun

Research Staff

Ford Motor Company
24500 Glendale Ave.
Redford, M| 48239
(313) 633-1035 Ext. 352

Machinery Noise

Prediction methods; control of noise sources;
determination of noise paths; coherence and
correlation methods; spectral methods; acoustic
radiation; techniques for noise reduction of
machines and machine components

Dr. L.L. Faulkner
Battelle-Columbus Laboratories
505 King Avenue

Columbus, OH 43201

(614) 424-5280

Blade Vibration

Excitation mechanisms; blade and blade group
vibration; blade-disc interaction; experimental
measurements in stationary and rotating con-
ditions

Professor N.F. Rieger

Department of Mechanical Engineering
Rochester Institute of Technology
One Lomb Memorial Drive

Rochester, NY 14623

(716) 475-2874

Fluid-Structure Interaction

Vortex-induced vibration; flutter: vibration caus-
ed by oscillating flows; turbulent buffeting of
structures; instabilities in tube arrays; leakage-
flow-induced vibration; design applications

Dr. S.D. Savkar

General Electric Co.

Research and Development Center
Building K-1, Room 5828
Schenectady, NY 12301

(518) 385-8053

Recent Developments in the Acquisition and Analysis
of Vibration Data

Acoustic emission; ultrasonic testing; holographic
measurements; signal analysis; data reduction
via spectral methods; shock response analysis;
industrial applications

Mr. H. Saunders
General Electric Co.
Building 41, Room 319
Schenectady, NY 12345
(518) 385-0251
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Special Problems in Vibration
Nonlinear vibration; random vibration; im-
pedance methods; statistical energy analysis;
seismic induced vibration; machine tool chatter

Professor J.F. Hamiiton
Purdue University

Ray W. Herrick Laboratories
West Lafayette, IN 47907
(314) 749-6317

THE XIITH CONFERENCE
ON MACHINE DYNAMICS

The conference will be held between April 23-27,
1979, in the High Tatra Mountains, with international
participation, by the Institute of Machine Mechanics
of the Slovak Academy of Sciences, in cooperation
with the Institute of Thermomechanics of the Czech-
oslovak Academy of Sciences, the Polish Academy
of Sciences and under the sponsorship of IFToMM.
For further information contact the Organizing
Committee, Xlith Conference on Machine Dynamics,
Institute of Machine Mechanics, Slovak Academy
of Sciences, 809 31 Bratislava, Czechoslovakia,
Ddbravska cesta.
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ANALYSIS AND DESIGN

ANALYTICAL METHODS

78-907

On Least Squares Approximations to Indefinite
Problems of the Mixed Type

G.J. Fix and M.D. Gunzburger

Dept. of Mathematics, Carnegie-Mellon Univ., Pitts-
burgh, PA, Intl. J. Numer. Methods Engr., 12 (3),
pp 453-469 (1978) 12 figs, 7 refs

Key Words: Least squares method, Flutter

A least squares method is presented for computing approxi-
mate solutions of indefinite partial differential equations
of the mixed type such as those that arise in connection with
transonic flutter analysis. In this work the method is for-
mulated and numerical resuits for model problems are
presented. Some theoretical aspects of least squares approxi-
mations are also discussed.

INTEGRAL TRANSFORMS
(See No. 954)

OPTIMIZATION TECHNIQUES

78-908

Optimal Design of Dynamically Loaded Continuous
Structures

E.J. Haug, Jr.and T.-T. Feng

College of Engrg., The Univ. of lowa, lowa City, IA,
Intl. J. Numer. Methods Engr., 12 (2), pp 299-317
(1978) 7 figs, 2 tables, 18 refs

Key Words: Beams, Plates, Transient response, Minimum
weight design

A computational algorithm is developed and applied for
optimization of beam and plate structures, subject to con-
straints on transient dynamic response. A continuous design
formulation is retained, with dynamic response governed
by partial differential operator equations. Adjoint equations
are employed for sensitivity anelysis and a function space

e ORI

gradient projection optimization approach is presented.
Finite element analysis methods are applied for solution of
the system dynamic and adjoint differential equations.
Displacement constrained beam and plate minimum weight
examples are solved, with a variety of boundary conditions.

78909

An Advanced Structural Analysis/Synthesis Capabil-
ity - ACCESS 2

L.A. Schmit and H. Miura

Univ. of California, Los Angeles, CA., Intl. J. Numer.
Methods Engr., 12 (2), pp 353-377 (1978) 8 figs,
5 tables, 18 refs

Key Words: Minimum weight design, Finite element tech-
nique, Mathematical programming, Computer-aided tech-
niques, Design techniques

An advanced automated design procedure for minimum
weight design of structures (ACCESS 2) is reported. Design
variable linking, constraint deletion, and explicit constraint
approximation are used to effectively combine finite el

and non-linear mathematical programming techniques. The
approximation concepts approach to structural synthesis
is extended to problems involving fibre composite structure,
thermal effects and natural frequency constraints in addition
to the usual static stress and displacement limitations. Sample
results illustrating these new features are given.

PERTURBATION METHODS
(See No. 984)

STABILITY ANALYSIS

78910

Nonlinear Behavior of Flutter Unstable Dynamical
Systems with Gyroscopic and Circulatory Forces
P.R. Sethna and S.M. Schapiro

Dept. of Aerospace Engrg. and Mechanics, Univ. of
Minnesota, Minneapolis, MN., J. Appl. Mech., Trans.
ASME, 44 (4), pp 755-762 (Dec 1977) 4 figs, 18 refs

Key Words: Flutter, Dynamic stability

Postflutter behavior of nonlinear discrete dynamical systems
having a combination of gyroscopic and circulatory forces
sre studied. The study leads to Hopf bifurcations. The
method of analysis is based on the method of Hopf and the
method of integral manifolds. The results of the analysis
are applied to an example and the accuracy of the analysis
is checked against numerical solutions of the equations of
motion.
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78-911

Dynamic Instability of Certain Conservative and
Non-Conservative Systems

G.T.S. Done and A. Simpson

Univ. of Edinburgh, UK, J. Mech. Engr. Sci., 19

(6), pp 251-263 (Dec 1977) 5 figs, 13 refs

Key Words: Dynamic stability, Mechanical systems

This paper is concerned primarily with the analysis and
resolution of the problems and contradictions that arise in
the classification as conservative or non-conservative of a
certain type of dynamical system. The systems concerned
have equations of motion of gyroscopic type when the de-
flections are expressed with reference to particular co-ordi-
nate axes, and they exhibit dynamic instability. Three
examples are considered which possess their own special
characteristics and subtleties; these are the rotating flexible
asymmetric shaft, the helicopter ground resonance system
and the clamped clamped flexible tube conveying fluid.
For each of these cases, the energy input mechanism is
examined and the problems of classification resolved.

78-912

On the Application of the Energy Method to the
Stability Problem of Nonconservative Autonomous
and Nonautonomous Systems

H.H.E. Leipholz

Dept. of Civil Engrg., Univ. of Waterloo, Waterloo,
Ontario, Canada N2L 3GL, Acta Mech., 28 (1-4),
pp 113-138 (1977) 10 figs, 8 refs

Key Words: Energy methods, Stability methods, Mechanical
systems

The energy approach is extended to cover the stability prob-
lem of nonconservative mechanical systems. The eigenvalue
curve is obtained by the condition that a certain matrix be
singular, and flutter loads follow from the requirement that
the derivative of the determinant of this matrix with respect
to the frequency of the motion be zero.

MODELING

78913

Vibration of Fixed-Ended Linear Chains of Discrete
Point - Masses and Tri-Diagonal Secular Determinants
O.R. Ainsworth, C.K. Liu,and R.A. Mann

Univ. of Alabama, University, AL, J. Franklin Inst.,
304 (2/3), pp 101-119 (Aug/Sept 1977) 4 figs, 2 refs

Key Words: Mathematical models, Coupied systems, Reso-
nant frequencies

The properties of the secular determinants which arise in
the study of harmonically coupled systems are further ex-
plored by extending the analysis to externslly coupled
systems. This treatment completes the modeling of such
vibrating systems as long chains of point-masses with free
or fixed ends. The results of the present and earlier analyses
provide compact expressions for the normal frequencies of
systems that in fact may be quite compiex. The modeling
of such vibrating systems in terms of known resonant fre-
quencies and of the constants occurring in these expressions
provides a new technique for the description of such systems.

DIGITAL SIMULATION
(Also see No. 1046)

78914

Digital Processing of System Responses

D. Rees

Dissertation, Ph.D., Polytechnic of Wales, UK, 250

‘pp (1976)

UM 1/2957c

Key Words: Measurement techniques, Dynamic propertic -,
Digital techniques, Spectrum analysis, Fourier transformation

This thesis describes an investigation into the development of
techniques for the measurement of system dynamic charac-
teristics based on digital processing methods. The techniques
are developed to meet the requirements of rapid measure-
ment time, noise and harmonic rejection capability and esse
of interpretation of results. A computational procedure using
spectral methods and based on the fast Fourier transform is
described, which considers a pseudorandom binsry sequence
as a series of sine waves of ‘discrete’ frequencies of well
defined amplitudes and phase relationships. Three computs-
tional algorithms have been considered, the discrete Fourier
transform, the radix-2 fast Fourier transform, and the mixed
radix fast Fourier transform.

78915

Develcpment of a Unified Approach to the Simula-
tion of Static and Dynamic Behavior of Large Mobile
Hydraulic Systems

S.K.R. lyengar

Ph.D. Thesis, Oklahoma State Univ., 125 pp (1977)
UM 7801260

%¢ +Words: Hydraulic equipment, Digital simulation
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This study considers the digital simulation of large bil
hydraulic systems. The objective is to develop a unified
approach to the portrayal of static and dynamic behavior
of such systems. A digital simulation program based on the
new canonical forms is developed and an example system
analysed to illustrate its efficacy. A method for qualitative
appraisal of large systems is developed and used to examine
the behavior of the example system.

DESIGN TECHNIQUES
(See Nos. 909, 930)

CRITERIA, STANDARDS, AND

SPECIFICATIONS
(Also see No. 1042)

78-916

Seismic Qualification of Systems, Structures, Equip-
ment and Components

E.G. Fischer

Mechanics Dept., Westinghouse R & D Center,
Pittsburgh, PA 15235, Nucl. Engr. Des., 46 (1),
pp 151-168 (Mar 1978) 22 figs, 10 refs

Key Words: Nuclear power plants, Standards and codes,
Seismic design

The purpose of this paper is to give an overview of the
various qualification procedures available to the vendors
of nuclear power plants and equipment for hopefully achiev-
ing NRC (Nuclear Regulatory Commission) plant licensing
and overall guaranteed safe operation. These procedures
ususlly involve computer-aide<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>